Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88); Proline dehydrogenase (EC 1.5.5.2) (characterized)
to candidate 5208103 Shew_0615 bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase (RefSeq)
Query= reanno::ANA3:7023590 (1064 letters) >lcl|FitnessBrowser__PV4:5208103 Shew_0615 bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase (RefSeq) Length = 1059 Score = 1848 bits (4786), Expect = 0.0 Identities = 923/1058 (87%), Positives = 996/1058 (94%) Query: 6 MFKASEVLAGRYDSANLDELFKAVTDNYIVDEEQYLSELIKLVPSSDEAIERVTRRAHEL 65 MFKASEVL GRYDSA LDELF A+T+NYIVDEEQYLSELIKLVPSSD+ I+R+T+RAH+L Sbjct: 1 MFKASEVLTGRYDSATLDELFTAITNNYIVDEEQYLSELIKLVPSSDDEIQRITKRAHDL 60 Query: 66 VNKVRQFDKKGLMVGIDAFLQQYSLETQEGIILMCLAEALLRIPDAATADALIEDKLSGA 125 V+KVRQ+DKKGLMVGIDAFLQQYSLETQEGIILMCLAEALLRIPDAATADALI+DKLSGA Sbjct: 61 VHKVRQYDKKGLMVGIDAFLQQYSLETQEGIILMCLAEALLRIPDAATADALIDDKLSGA 120 Query: 126 KWDEHLSKSDSVLVNASTWGLMLTGKIVKLDKKIDGTPSNLLSRLVNRLGEPVIRQAMMA 185 KWDEHLSKSDS LVNASTWGLMLTGKI+ LDK IDG PS+LL+RLVNRLGEPVIRQAM+A Sbjct: 121 KWDEHLSKSDSTLVNASTWGLMLTGKIISLDKSIDGKPSSLLNRLVNRLGEPVIRQAMLA 180 Query: 186 AMKIMGKQFVLGRTMKEALKNSEDKRKLGYTHSYDMLGEAALTRKDAEKYFNDYANAITE 245 AMKIMGKQFVLGRT++EALKNS DKRKLGYTHSYDMLGEAALT KDA+KY+ DY+NAI Sbjct: 181 AMKIMGKQFVLGRTVQEALKNSTDKRKLGYTHSYDMLGEAALTMKDAQKYYQDYSNAIAA 240 Query: 246 LGAQSYNENESPRPTISIKLSALHPRYEVANEDRVLTELYDTVIRLIKLARGLNIGISID 305 LGAQ Y+E+E+PRPTISIKLSALHPRYEVANEDR +TELYDT+I+L+ AR LN+G+SID Sbjct: 241 LGAQQYDESEAPRPTISIKLSALHPRYEVANEDRTMTELYDTLIKLVSQARSLNVGVSID 300 Query: 306 AEEVDRLELSLKLFQKLFNADATKGWGLLGIVVQAYSKRALPVLVWLTRLAKEQGDEIPV 365 AEEVDRLELSLKLFQKL+N+DA KGWGLLG+VVQAYSKRALPVL W+TRLAK+QGDEIPV Sbjct: 301 AEEVDRLELSLKLFQKLYNSDAAKGWGLLGLVVQAYSKRALPVLCWITRLAKDQGDEIPV 360 Query: 366 RLVKGAYWDSELKWAQQAGEAAYPLYTRKAGTDVSYLACARYLLSDATRGAIYPQFASHN 425 RLVKGAYWDSELKWAQ AGE YPL+TRKAGTDVSYLACARYLLSDATRGAIYPQFASHN Sbjct: 361 RLVKGAYWDSELKWAQVAGEGGYPLFTRKAGTDVSYLACARYLLSDATRGAIYPQFASHN 420 Query: 426 AQTVAAISDMAGDRNHEFQRLHGMGQELYDTILSEAGAKAVRIYAPIGAHKDLLPYLVRR 485 AQTVAAI+DMAGDR +EFQRLHGMG+ELYDT+L+E+G VRIYAP+GAHKDLLPYLVRR Sbjct: 421 AQTVAAITDMAGDRLYEFQRLHGMGEELYDTLLAESGVSTVRIYAPVGAHKDLLPYLVRR 480 Query: 486 LLENGANTSFVHKLVDPKTPIESLVVHPLKTLTGYKTLANNKIVLPTDIFGSDRKNSKGL 545 LLENGANTSFVHKLVDPKTPIESLVVHPL TL YKTLANNKIV P DIFG++RKNSKG+ Sbjct: 481 LLENGANTSFVHKLVDPKTPIESLVVHPLTTLQSYKTLANNKIVQPIDIFGAERKNSKGI 540 Query: 546 NMNIISEAEPFFAALDKFKSTQWQAGPLVNGQTLTGEHKTVVSPFDTTQTVGQVAFADKA 605 NMNIISE+EPFFAALDKFK QW AGP+VNG+TL+GE V SP+DTTQ VG+VAFA+ Sbjct: 541 NMNIISESEPFFAALDKFKDQQWSAGPIVNGETLSGETIEVKSPYDTTQIVGKVAFANNQ 600 Query: 606 AIEQAVASADAAFATWTRTPVEVRASALQKLADLLEENREELIALCTREAGKSIQDGIDE 665 AIEQA+ASA AF +W TPVEVRA+ALQKLADLLEENREELIALCTREAGKSIQDGIDE Sbjct: 601 AIEQALASAHNAFGSWCSTPVEVRANALQKLADLLEENREELIALCTREAGKSIQDGIDE 660 Query: 666 VREAVDFCRYYAVQAKKLMSKPELLPGPTGELNELFLQGRGVFVCISPWNFPLAIFLGQV 725 VREAVDFCRYYAVQAKK+M KPELLPGPTGELNELFLQGRGVFVCISPWNFPLAIFLGQV Sbjct: 661 VREAVDFCRYYAVQAKKMMGKPELLPGPTGELNELFLQGRGVFVCISPWNFPLAIFLGQV 720 Query: 726 SAALAAGNTVVAKPAEQTSIIGYRAVQLAHQAGIPTDVLQYLPGTGATVGNALTADERIG 785 +AALAAGNTVVAKPAEQTSI+GYRAVQLAH+AGIP + LQ+LPGTGATVG +TADERIG Sbjct: 721 TAALAAGNTVVAKPAEQTSIVGYRAVQLAHEAGIPKEALQFLPGTGATVGATITADERIG 780 Query: 786 GVCFTGSTGTAKLINRTLANREGAIIPLIAETGGQNAMVVDSTSQPEQVVNDVVSSSFTS 845 GVCFTGST TAK IN TLA R+GAIIPLIAETGGQNAMVVDSTSQPEQVVNDVVSSSFTS Sbjct: 781 GVCFTGSTVTAKRINLTLAQRDGAIIPLIAETGGQNAMVVDSTSQPEQVVNDVVSSSFTS 840 Query: 846 AGQRCSALRVLFLQEDIADRVIDVLQGAMDELVIGNPSSVKTDVGPVIDATAKANLDAHI 905 AGQRCSALRVL+LQEDIADRVIDV++GAMDEL IGNP SVKTDVGPVIDATAKANL+AHI Sbjct: 841 AGQRCSALRVLYLQEDIADRVIDVMKGAMDELTIGNPGSVKTDVGPVIDATAKANLNAHI 900 Query: 906 DHIKQVGKLIKQMSLPAGTENGHFVSPTAVEIDSIKVLEKEHFGPILHVIRYKASELAHV 965 DHIKQVG+LI Q+ LPAGTENGHFV+PTAVEIDSIKVLEKEHFGPILHVIRYKA++L V Sbjct: 901 DHIKQVGRLINQLELPAGTENGHFVAPTAVEIDSIKVLEKEHFGPILHVIRYKAADLPKV 960 Query: 966 IDEINSTGFGLTLGIHSRNEGHALEVADKVNVGNVYINRNQIGAVVGVQPFGGQGLSGTG 1025 ID+INSTGFGLTLGIHSRNEGHALEVADKVNVGNVYINRNQIGAVVGVQPFGGQGLSGTG Sbjct: 961 IDDINSTGFGLTLGIHSRNEGHALEVADKVNVGNVYINRNQIGAVVGVQPFGGQGLSGTG 1020 Query: 1026 PKAGGPHYLTRFVTEKTRTNNITAIGGNATLLSLGDSD 1063 PKAGGPHYLTRFVTEKTRTNNITAIGGNATLLSLGDS+ Sbjct: 1021 PKAGGPHYLTRFVTEKTRTNNITAIGGNATLLSLGDSE 1058 Lambda K H 0.317 0.133 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 3020 Number of extensions: 101 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 1064 Length of database: 1059 Length adjustment: 45 Effective length of query: 1019 Effective length of database: 1014 Effective search space: 1033266 Effective search space used: 1033266 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 58 (26.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory