Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate 5208068 Shew_0580 succinylglutamic semialdehyde dehydrogenase (RefSeq)
Query= BRENDA::P76217 (492 letters) >lcl|FitnessBrowser__PV4:5208068 Shew_0580 succinylglutamic semialdehyde dehydrogenase (RefSeq) Length = 487 Score = 581 bits (1497), Expect = e-170 Identities = 279/484 (57%), Positives = 368/484 (76%) Query: 1 MTLWINGDWITGQGASRVKRNPVSGEVLWQGNDADAAQVEQACRAARAAFPRWARLSFAE 60 M+ +ING W+ G G V +NP + EV+W+ A QV A AARAA W L F Sbjct: 2 MSQFINGQWVAGLGHDVVSKNPANQEVIWESKTATPEQVNAAVEAARAAQFDWFMLGFDA 61 Query: 61 RHAVVERFAALLESNKAELTAIIARETGKPRWEAATEVTAMINKIAISIKAYHVRTGEQR 120 R A+VE + LE++K ++ +IA+ETGKP+WE ATE AMI KI +S+ AYH RTG Sbjct: 62 RLAIVEAYRDQLEAHKGDIAEVIAQETGKPQWETATEAGAMIGKIGLSVAAYHKRTGTSE 121 Query: 121 SEMPDGAASLRHRPHGVLAVFGPYNFPGHLPNGHIVPALLAGNTIIFKPSELTPWSGEAV 180 ++ P G A LRH+PHGV+AVFGPYNFPGHLPNGHIVPALLAGNT++FKPSELTP + E + Sbjct: 122 NDTPAGRAVLRHKPHGVVAVFGPYNFPGHLPNGHIVPALLAGNTVVFKPSELTPKTAELM 181 Query: 181 MRLWQQAGLPPGVLNLVQGGRETGQALSALEDLDGLLFTGSANTGYQLHRQLSGQPEKIL 240 ++LW++AGLP GV+NLVQG ETG+AL++ +DGL FTGS+ TG+ LH+Q +G P KIL Sbjct: 182 LKLWEKAGLPAGVINLVQGEVETGKALASHPQIDGLFFTGSSRTGHILHQQYAGHPGKIL 241 Query: 241 ALEMGGNNPLIIDEVADIDAAVHLTIQSAFVTAGQRCTCARRLLLKSGAQGDAFLARLVA 300 ALEMGGNNPLII V D AAVH IQSA++++GQRCTCARRL ++ GA+GDA LA+L Sbjct: 242 ALEMGGNNPLIIKGVKDTLAAVHDIIQSAYISSGQRCTCARRLYVEKGAEGDALLAKLAE 301 Query: 301 VSQRLTPGNWDDEPQPFIGGLISEQAAQQVVTAWQQLEAMGGRPLLAPRLLQAGTSLLTP 360 +++ G W+ +PQPF+G +ISE AA+ +V A + L +GG PL+ + L+AGT L++P Sbjct: 302 AVKQIKVGPWNAQPQPFMGSMISEAAAKGMVEAQRNLINLGGTPLVELKHLEAGTGLVSP 361 Query: 361 GIIEMTGVAGVPDEEVFGPLLRVWRYDTFDEAIRMANNTRFGLSCGLVSPEREKFDQLLL 420 G+I++T V +PDEE FGPLL+V RY FDEAI++AN+TR+GLS G+++ RE +D L Sbjct: 362 GLIDVTQVIELPDEEYFGPLLQVVRYTDFDEAIKLANDTRYGLSAGILADSREDYDYFLA 421 Query: 421 EARAGIVNWNKPLTGAASTAPFGGIGASGNHRPSAWYAADYCAWPMASLESDSLTLPATL 480 RAGIVNWNK +TGA+ +APFGG+GASGNHR SA+YAADYCA+P+AS+E+D+L +PA+L Sbjct: 422 RIRAGIVNWNKQITGASGSAPFGGVGASGNHRASAFYAADYCAYPVASVEADALAMPASL 481 Query: 481 NPGL 484 +PGL Sbjct: 482 SPGL 485 Lambda K H 0.318 0.134 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 781 Number of extensions: 30 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 492 Length of database: 487 Length adjustment: 34 Effective length of query: 458 Effective length of database: 453 Effective search space: 207474 Effective search space used: 207474 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory