GapMind for catabolism of small carbon sources

 

Aligments for a candidate for adh in Shewanella loihica PV-4

Align aldehyde-alcohol dehydrogenase; EC 1.1.1.1; EC 1.2.1.10 (characterized)
to candidate 5209439 Shew_1910 bifunctional acetaldehyde-CoA/alcohol dehydrogenase (RefSeq)

Query= CharProtDB::CH_018413
         (862 letters)



>lcl|FitnessBrowser__PV4:5209439 Shew_1910 bifunctional
           acetaldehyde-CoA/alcohol dehydrogenase (RefSeq)
          Length = 872

 Score = 1016 bits (2627), Expect = 0.0
 Identities = 503/865 (58%), Positives = 653/865 (75%), Gaps = 9/865 (1%)

Query: 1   MKVTTVKELDEKLKVIKEAQKKFSCYSQEMVDEIFRNAAMAAIDARIELAKAAVLETGMG 60
           M V+  +ELD+ ++ + +AQ +F+ +SQE VD+IFR AA+AA DARI LAK A  ETGMG
Sbjct: 1   MTVSNQQELDQLVERVAKAQAQFANFSQEQVDKIFRAAALAAADARISLAKMAANETGMG 60

Query: 61  LVEDKVIKNHFAGEYIYNKYKDEKTCGIIERNEPYGITKIAEPIGVVAAIIPVTNPTSTT 120
           ++EDKVIKNHFA EYIYNKYKD+KTCGI+E +  +G   IAEP+G++  I+P TNPTST 
Sbjct: 61  VLEDKVIKNHFASEYIYNKYKDDKTCGILEEDPTFGTITIAEPVGLICGIVPTTNPTSTA 120

Query: 121 IFKSLISLKTRNGIFFSPHPRAKKSTILAAKTILDAAVKSGAPENIIGWIDEPSIELTQY 180
           IFK+LISLKTRNGI FSPHPRAK ST  AA+ +L+AAV++GAP++IIGWIDEPS+ L+  
Sbjct: 121 IFKALISLKTRNGIIFSPHPRAKVSTTTAARLVLEAAVEAGAPKDIIGWIDEPSVALSNQ 180

Query: 181 LM--QKADITLATGGPSLVKSAYSSGKPAIGVGPGNTPVIIDESAHIKMAVSSIILSKTY 238
           LM   K ++ LATGGP +VK+AYSSGKPAIGVG GNTP++IDE+A IK AVSSI++SKT+
Sbjct: 181 LMTHDKINLILATGGPGMVKAAYSSGKPAIGVGAGNTPIVIDETADIKRAVSSILMSKTF 240

Query: 239 DNGVICASEQSVIVLKSIYNKVKDEFQERGAYIIKKNELDKVREVIFKDGSVNPKIVGQS 298
           DNGV+CASEQ+V+V+ ++Y+ VK+ F   G Y++   E   +++VI K+G++N  IVGQS
Sbjct: 241 DNGVVCASEQAVVVVDAVYDAVKERFASHGGYMLSSKEAKAMQKVILKNGALNADIVGQS 300

Query: 299 AYTIAAMAGIKVPKTTRILIGEVTSLGEEEPFAHEKLSPVLAMYEADNFDDALKKAVTLI 358
           A TIAAMA IKVP +T++LIG+ T + E E FAHEKLSP+LAMY A +FDDAL KA  L+
Sbjct: 301 AATIAAMANIKVPASTKVLIGQATEISESEAFAHEKLSPLLAMYRASDFDDALNKAEALV 360

Query: 359 NLGGLGHTSGIYADEIKARDKIDRFSSAMKTVRTFVNIPTSQGASGDLYNFRIPPSFTLG 418
            LGG+GHTSG+Y D+    +++  F   MKT R  +N P SQG  GDLYNF++ PS TLG
Sbjct: 361 TLGGIGHTSGLYTDQDTQTERVRTFGFRMKTARILINTPASQGGIGDLYNFKLAPSLTLG 420

Query: 419 CGFWGGNSVSENVGPKHLLNIKTVAERRENMLWFRVPHKVYFKFGCLQFALKDLKDLKKK 478
           CG WGGNS+SENVGP HL+N KTVA+R ENMLW ++P  +YF+ G L  AL++L D  KK
Sbjct: 421 CGSWGGNSISENVGPSHLINKKTVAKRAENMLWHKLPSSIYFRRGSLPIALEELSD--KK 478

Query: 479 RAFIVTDSDPYNLNYVDSIIKILEHLDIDFKVFNKVGREADLKTIKKATEEMSSFMPDTI 538
           RA IVTD   +N  Y D  IKIL+   ++ +VF +V  +  L  + +      SF PD I
Sbjct: 479 RALIVTDKYLFNNGYCDETIKILKSQGLETEVFYEVEADPTLAIVNQGASVAKSFQPDVI 538

Query: 539 IALGGTPEMSSAKLMWVLYEHPEVKFEDLAIKFMDIRKRIYTFPKLGKKAMLVAITTSAG 598
           IALGG   M +AK++WV+YEHPEV F DLA++FMDIRKRIY FPKLGKKA +VAI T++G
Sbjct: 539 IALGGGSPMDAAKIIWVMYEHPEVDFADLALRFMDIRKRIYKFPKLGKKAKMVAIPTTSG 598

Query: 599 SGSEVTPFALVTDNNTGNKYMLADYEMTPNMAIVDAELMMKMPKGLTAYSGIDALVNSIE 658
           +GSEVTPFA+VTD  TG KY +ADYE+TPNMAIVD  L+M MPK LTA+ GIDA+ +++E
Sbjct: 599 TGSEVTPFAVVTDEQTGMKYPIADYELTPNMAIVDPNLVMDMPKSLTAFGGIDAITHALE 658

Query: 659 AYTSVYASEYTNGLALEAIRLIFKYLPEAYKNGRTNEKAREKMAHASTMAGMASANAFLG 718
           AY SV A+EY++G AL+A+ L+ KYLP++Y  G     AREK+ + +T+AG+A ANAFLG
Sbjct: 659 AYVSVMANEYSDGQALQALDLLVKYLPDSYALGAQAPVAREKVHNGATIAGIAFANAFLG 718

Query: 719 LCHSMAIKLSSEHNIPSGIANALLIEEVIKFNAVDNPVKQAPCPQYKYPNTIFRYARIAD 778
           +CHSMA KL +E ++  G+ANALLI  VI+FNA D P KQA   QY  P  + RYA+IA+
Sbjct: 719 ICHSMAHKLGAEFHLAHGLANALLISNVIRFNATDLPTKQAAFSQYDRPKALCRYAKIAE 778

Query: 779 YIKLGGNT-----DEEKVDLLINKIHELKKALNIPTSIKDAGVLEENFYSSLDRISELAL 833
           ++KL G T     DEEKV+ L+ KI ELKK + IP SI++AGV E +F++ LD ++E A 
Sbjct: 779 HLKLKGATGEGISDEEKVEALLEKIDELKKTIGIPASIQEAGVNEADFFAKLDELAEDAF 838

Query: 834 DDQCTGANPRFPLTSEIKEMYINCF 858
           DDQCTGANPR+PL +E+K +    F
Sbjct: 839 DDQCTGANPRYPLIAELKAILTASF 863


Lambda     K      H
   0.317    0.134    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 1761
Number of extensions: 82
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 862
Length of database: 872
Length adjustment: 42
Effective length of query: 820
Effective length of database: 830
Effective search space:   680600
Effective search space used:   680600
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory