GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fruP in Shewanella loihica PV-4

Align MFS transporter, FHS family, L-fucose permease (characterized, see rationale)
to candidate 5209419 Shew_1890 glucose/galactose transporter (RefSeq)

Query= uniprot:A0A1I2JXG1
         (442 letters)



>FitnessBrowser__PV4:5209419
          Length = 421

 Score =  435 bits (1118), Expect = e-126
 Identities = 225/412 (54%), Positives = 296/412 (71%), Gaps = 12/412 (2%)

Query: 24  DYPMAMGVLTSIFFMWGFLTCLNDILIPHLKAVFKLNYAEAMLVQFTFFGAYFLMSLPAG 83
           +Y  A+  LTS+FFMWGF+TCLNDILIPHLKA F LNYAEAML+QF FFGAYFL+S+PAG
Sbjct: 19  NYRFALVSLTSLFFMWGFITCLNDILIPHLKAAFSLNYAEAMLIQFCFFGAYFLVSMPAG 78

Query: 84  LLVARLGYKKGIVAGLAVAGVGAAGFWPAAAMHFYPAFLGALFVLATGITVLQVAANAYV 143
            LV  LGY+KGIV GL +A +G A F+PAAA+  Y  FLGALFVLA+GIT+LQVAAN YV
Sbjct: 79  KLVKALGYQKGIVTGLLIAALGCALFYPAAALATYGLFLGALFVLASGITILQVAANPYV 138

Query: 144 ALLGPEKSASSRLTLAQALNSLGTFLAPKFGGLLILSAAVLSAEQIAKLSPAEQVAYRVQ 203
             LG  ++ASSRL L QA N+LGT +AP FG +LILS AV ++E + +            
Sbjct: 139 NALGSVETASSRLNLTQAFNALGTTVAPYFGAVLILSVAVEASETLTQAQ---------A 189

Query: 204 EAQTVQGPYLGLAIVLFLLAVFVYLFRLPALTE---KTEQASVKQHSLVSPLRHPHVLFG 260
           EA+ V+ PYL LA  L +LA+      LP + E     EQ  V  +   S L+  H++ G
Sbjct: 190 EAEVVKLPYLILATALGVLALVFAKLDLPQIKEHCQSGEQGEVVHNGKTSALQSLHLVLG 249

Query: 261 VLAIFFYVGGEVAIGSFLVNYLSMPDIGNMSEQAAANWVAYYWLGAMIGRFIGSALLAKL 320
            + IF YVG EV+IGSFLVN+L+  DI  +SE +AA+++ YYW GAM+GRFIGSA++ K+
Sbjct: 250 AVGIFVYVGAEVSIGSFLVNFLAQDDIAGLSEASAASYITYYWGGAMVGRFIGSAVMQKV 309

Query: 321 SPRKLLAIFAAINMALVLTTMMTKGTVAMYSVVSIGLFNSIMFPTIFSLGIERMGPMTGE 380
               +L   A +   LV   M + GTVAM++++++GLFNSIMFPTIFSL +  +GP T +
Sbjct: 310 PAGTVLGFNALMAALLVALAMTSTGTVAMWAILAVGLFNSIMFPTIFSLALRDLGPHTSQ 369

Query: 381 ASSLLIMAIVGGAIVPFVQGLFADHIGVQHAFFLPLLCYAYIVFYGLYGSRI 432
            S +L +AIVGGAI+P +QG+ AD+IG+QHAFFLP++CY +I+FYG+ GS++
Sbjct: 370 GSGVLCLAIVGGAILPLLQGVLADNIGIQHAFFLPIICYLFIMFYGVKGSKL 421


Lambda     K      H
   0.327    0.140    0.414 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 560
Number of extensions: 27
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 442
Length of database: 421
Length adjustment: 32
Effective length of query: 410
Effective length of database: 389
Effective search space:   159490
Effective search space used:   159490
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory