GapMind for catabolism of small carbon sources

 

Aligments for a candidate for fruP in Shewanella loihica PV-4

Align MFS transporter, FHS family, L-fucose permease (characterized, see rationale)
to candidate 5209419 Shew_1890 glucose/galactose transporter (RefSeq)

Query= uniprot:A0A1I2JXG1
         (442 letters)



>FitnessBrowser__PV4:5209419
          Length = 421

 Score =  435 bits (1118), Expect = e-126
 Identities = 225/412 (54%), Positives = 296/412 (71%), Gaps = 12/412 (2%)

Query: 24  DYPMAMGVLTSIFFMWGFLTCLNDILIPHLKAVFKLNYAEAMLVQFTFFGAYFLMSLPAG 83
           +Y  A+  LTS+FFMWGF+TCLNDILIPHLKA F LNYAEAML+QF FFGAYFL+S+PAG
Sbjct: 19  NYRFALVSLTSLFFMWGFITCLNDILIPHLKAAFSLNYAEAMLIQFCFFGAYFLVSMPAG 78

Query: 84  LLVARLGYKKGIVAGLAVAGVGAAGFWPAAAMHFYPAFLGALFVLATGITVLQVAANAYV 143
            LV  LGY+KGIV GL +A +G A F+PAAA+  Y  FLGALFVLA+GIT+LQVAAN YV
Sbjct: 79  KLVKALGYQKGIVTGLLIAALGCALFYPAAALATYGLFLGALFVLASGITILQVAANPYV 138

Query: 144 ALLGPEKSASSRLTLAQALNSLGTFLAPKFGGLLILSAAVLSAEQIAKLSPAEQVAYRVQ 203
             LG  ++ASSRL L QA N+LGT +AP FG +LILS AV ++E + +            
Sbjct: 139 NALGSVETASSRLNLTQAFNALGTTVAPYFGAVLILSVAVEASETLTQAQ---------A 189

Query: 204 EAQTVQGPYLGLAIVLFLLAVFVYLFRLPALTE---KTEQASVKQHSLVSPLRHPHVLFG 260
           EA+ V+ PYL LA  L +LA+      LP + E     EQ  V  +   S L+  H++ G
Sbjct: 190 EAEVVKLPYLILATALGVLALVFAKLDLPQIKEHCQSGEQGEVVHNGKTSALQSLHLVLG 249

Query: 261 VLAIFFYVGGEVAIGSFLVNYLSMPDIGNMSEQAAANWVAYYWLGAMIGRFIGSALLAKL 320
            + IF YVG EV+IGSFLVN+L+  DI  +SE +AA+++ YYW GAM+GRFIGSA++ K+
Sbjct: 250 AVGIFVYVGAEVSIGSFLVNFLAQDDIAGLSEASAASYITYYWGGAMVGRFIGSAVMQKV 309

Query: 321 SPRKLLAIFAAINMALVLTTMMTKGTVAMYSVVSIGLFNSIMFPTIFSLGIERMGPMTGE 380
               +L   A +   LV   M + GTVAM++++++GLFNSIMFPTIFSL +  +GP T +
Sbjct: 310 PAGTVLGFNALMAALLVALAMTSTGTVAMWAILAVGLFNSIMFPTIFSLALRDLGPHTSQ 369

Query: 381 ASSLLIMAIVGGAIVPFVQGLFADHIGVQHAFFLPLLCYAYIVFYGLYGSRI 432
            S +L +AIVGGAI+P +QG+ AD+IG+QHAFFLP++CY +I+FYG+ GS++
Sbjct: 370 GSGVLCLAIVGGAILPLLQGVLADNIGIQHAFFLPIICYLFIMFYGVKGSKL 421


Lambda     K      H
   0.327    0.140    0.414 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 560
Number of extensions: 27
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 442
Length of database: 421
Length adjustment: 32
Effective length of query: 410
Effective length of database: 389
Effective search space:   159490
Effective search space used:   159490
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory