Align Putative PTS system glucosamine-specific EIICBA component; EC 2.7.1.193 (characterized)
to candidate 5210198 Shew_2641 PTS system, glucose-like IIB subunint (RefSeq)
Query= SwissProt::P39816 (631 letters) >FitnessBrowser__PV4:5210198 Length = 490 Score = 302 bits (774), Expect = 2e-86 Identities = 167/467 (35%), Positives = 264/467 (56%), Gaps = 19/467 (4%) Query: 6 FQILQQLGRALMTPVAVLPAAGLLLRFGDKDLLNIP-----IIKDAGGVVFDNLPLIFAV 60 F+ Q+L +AL+ P+A+LPAAG+++ + I ++ G +VF +P++FAV Sbjct: 24 FKFAQRLSQALLLPIAILPAAGVMIGLATNPIPFISADLATLMWTVGNLVFSMMPMLFAV 83 Query: 61 GVAIGLAGGEGVAGLAAVIGYLILTVTLDNMGKLLGLQPPYEGAEHLIDMGVFGGIIIGL 120 +AIG +G+A +AV GY + +L + K+ L + ID G+ GG+++G Sbjct: 84 TIAIGFCRDQGIAAFSAVFGYGVFFSSLSALAKIYHLPTEMILGQATIDTGIAGGMMVGA 143 Query: 121 LAAYLYKRFSSIELHPVLGFFSGKRFVPIITSVSSLVIGVIFSFVWPLIQNGINAASS-- 178 + K I L V FF G+R P++ ++++ +F +WPL+ N I S+ Sbjct: 144 FTCLVVKHSERIRLPAVFSFFEGRRSAPLLMLPMAILLAYLFLLLWPLLSNWIEQISNWA 203 Query: 179 LIADSTVGLFFYATIYRLLIPFGLHHIFYTPFYFMMGEYTDPSTGNTVTGDLTRFFAGDP 238 + + Y + RLLIP GLHHI+ PFY MG+Y + V G++ R+ AGDP Sbjct: 204 VYQEPASAFAVYGMVERLLIPLGLHHIWNAPFYLEMGQYFNGD--EWVRGEVARYLAGDP 261 Query: 239 TAGRFMMGDFPYMIFCLPAVALAIIHTARPEKKKMISGVMISAALTSMLTGITEPVEFSF 298 AG + G + ++ LPA ALAI A ++ ++G+M+SAA LTG+TEP+EF+F Sbjct: 262 QAGN-LAGGYLIKMWGLPAAALAIWRCADKHERNRVAGIMLSAATACWLTGVTEPIEFAF 320 Query: 299 LFVAPVLYLINSILAGVIFVVCDLFHVRHGYTFSGGGIDYVLNYGLSTNGWVVIPVGIVF 358 +FVAP+L+++++++ G+ + V + H FS G +D+ L G S N + +G + Sbjct: 321 MFVAPLLFILHALMTGIAYAVTISLDIHHSVVFSHGLVDFSLLLGQSRNVEWFLILGPLT 380 Query: 359 AFIYYYLFRFAILKWNLKTPGRETDEDGQNEEKAPVAKDQLAFHVLQALGGQQNIANLDA 418 A IYY +FR AIL +NLKTPGR GQ ++ ALGGQ NI L A Sbjct: 381 AVIYYLVFRGAILAFNLKTPGRMEAGSGQRAG---------LISMITALGGQDNINELTA 431 Query: 419 CITRLRVTVHQPSQVCKDELKRLGAVGVLEVNNNFQAIFGTKSDALK 465 C+TRLR++V V K +L +LGA GV+ V N Q ++GTK+++++ Sbjct: 432 CLTRLRISVKHAELVDKAQLNKLGAKGVVLVGNGVQLVYGTKAESIR 478 Lambda K H 0.324 0.142 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 701 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 631 Length of database: 490 Length adjustment: 36 Effective length of query: 595 Effective length of database: 454 Effective search space: 270130 Effective search space used: 270130 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (22.0 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory