GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gluP in Shewanella loihica PV-4

Align D-mannitol and D-mannose transporter (MFS superfamily) (characterized)
to candidate 5209419 Shew_1890 glucose/galactose transporter (RefSeq)

Query= reanno::SB2B:6936374
         (413 letters)



>FitnessBrowser__PV4:5209419
          Length = 421

 Score =  415 bits (1066), Expect = e-120
 Identities = 221/415 (53%), Positives = 289/415 (69%), Gaps = 17/415 (4%)

Query: 1   MAFVSSTTPQNGSAAPAQSHQQLLFGAMTSLFFIWGFITALNDILIPHLKGIFDLSYTQA 60
           MA +  ++   G     ++++  L  ++TSLFF+WGFIT LNDILIPHLK  F L+Y +A
Sbjct: 1   MAMMQQSSTATGVGGEQENYRFALV-SLTSLFFMWGFITCLNDILIPHLKAAFSLNYAEA 59

Query: 61  MLVQFCFFGAYFLVSPLAGVLIARIGYLRGIIFGLSTMATGCLLFYPASSLEQYALFLLA 120
           ML+QFCFFGAYFLVS  AG L+  +GY +GI+ GL   A GC LFYPA++L  Y LFL A
Sbjct: 60  MLIQFCFFGAYFLVSMPAGKLVKALGYQKGIVTGLLIAALGCALFYPAAALATYGLFLGA 119

Query: 121 LFVLASGITILQVSANPFVARLGPERTAASRLNLAQALNSLGHTLGPLFGSLLIFGAAAG 180
           LFVLASGITILQV+ANP+V  LG   TA+SRLNL QA N+LG T+ P FG++LI   A  
Sbjct: 120 LFVLASGITILQVAANPYVNALGSVETASSRLNLTQAFNALGTTVAPYFGAVLILSVAVE 179

Query: 181 THEA----------VQLPYLLLAAVIGIIAVGFIFLG-GKVK-HADMG----VDHRHKGS 224
             E           V+LPYL+LA  +G++A+ F  L   ++K H   G    V H  K S
Sbjct: 180 ASETLTQAQAEAEVVKLPYLILATALGVLALVFAKLDLPQIKEHCQSGEQGEVVHNGKTS 239

Query: 225 LLSHKRLLLGALAIFLYVGAEVSIGSFLVNYFAEPSIGGLDEKSAAELVSWYWGGAMIGR 284
            L    L+LGA+ IF+YVGAEVSIGSFLVN+ A+  I GL E SAA  +++YWGGAM+GR
Sbjct: 240 ALQSLHLVLGAVGIFVYVGAEVSIGSFLVNFLAQDDIAGLSEASAASYITYYWGGAMVGR 299

Query: 285 FAGAALTRRFNPAMVLAANAVFANLLLMLTIVSSGELALVAVLAVGFFNSIMFPTIFTLA 344
           F G+A+ ++     VL  NA+ A LL+ L + S+G +A+ A+LAVG FNSIMFPTIF+LA
Sbjct: 300 FIGSAVMQKVPAGTVLGFNALMAALLVALAMTSTGTVAMWAILAVGLFNSIMFPTIFSLA 359

Query: 345 IEGLGELTSRGSGLLCQAIVGGALLPVIQGVVADNVGVQLSFIVPTFCYFYICWY 399
           +  LG  TS+GSG+LC AIVGGA+LP++QGV+ADN+G+Q +F +P  CY +I +Y
Sbjct: 360 LRDLGPHTSQGSGVLCLAIVGGAILPLLQGVLADNIGIQHAFFLPIICYLFIMFY 414


Lambda     K      H
   0.329    0.142    0.425 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 506
Number of extensions: 22
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 413
Length of database: 421
Length adjustment: 31
Effective length of query: 382
Effective length of database: 390
Effective search space:   148980
Effective search space used:   148980
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory