Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate 5210656 Shew_3084 AMP-dependent synthetase and ligase (RefSeq)
Query= BRENDA::A7KUK6 (562 letters) >FitnessBrowser__PV4:5210656 Length = 531 Score = 197 bits (502), Expect = 7e-55 Identities = 149/487 (30%), Positives = 237/487 (48%), Gaps = 28/487 (5%) Query: 70 GDVLALFTPNSIDTPVVMWGTLWAGGTISPANPGYTVDELAFQLKNSHAKGLVTQASVLP 129 GD +A+ PN + +G L AG + NP YT EL Q ++S AK LV + +LP Sbjct: 66 GDKVAIQLPNITQFVIAAYGALRAGMILVNTNPLYTQRELIHQYRDSDAKALVVLSDLLP 125 Query: 130 ----VAREAAKKVGMPEDRIILIGDQRDPDARVKH--FTSVRNISGATRYRKQKITPAKD 183 V E + + + LI Q D+++ H F V + YR ++ + Sbjct: 126 TLETVIPETQIETVISTHPLDLIATQPQADSQLAHIGFNQVLALGSQAEYRPVEVAQ-QS 184 Query: 184 VAFLVYSSGTTGVPKGVMISHRNIVANIRQQFIAEGEMLSWNGGPDGKGDRV-LAFLPFY 242 +A L Y+ GTTG+ KG M+SH N++AN+ Q + S +G+ + +A LP Y Sbjct: 185 LAALQYTGGTTGLSKGAMLSHSNLLANMLQ-------VQSRLASKFVEGEEIFIAPLPIY 237 Query: 243 HIYGLTCLITQALYKGYHLIVMSKFDIEKWCAHVQNYRCSFSYIVPPVVLLLGKHPVVDK 302 HIY G +++ + DI + + + + + + L Sbjct: 238 HIYAFMVNFVYFEQGGCSVLIPNPRDISALIQTMSQHPFTGFAGLNTLFVGLCHQQSFQA 297 Query: 303 YDLSSLRMMNSGAAPLTQELVEAVYSRIKVGIKQGYGLSETSPTTHSQRWEDWREAMGSV 362 D S L++ SG LTQ S I +GYGLSETSP E +G++ Sbjct: 298 LDFSHLKITISGGTALTQAAASIWQSTTGCTISEGYGLSETSPVVSLNA--PGLECLGTI 355 Query: 363 GRLMPNMQAKYMTMPEDGSEPKEVGEGEVGELYLKGPNVFLGYHENPEATKGCLSEDGWF 422 GR + + Q K + D SE +EV +GE+GEL +KGP V GY + PE T ++ DG+F Sbjct: 356 GRPVIDTQVKIL----DASE-QEVPQGEIGELAVKGPQVMSGYWQKPEETAKVMTSDGFF 410 Query: 423 QTGDVGYQDAKGNFYITDRVKELIKYKGFQVPPAELEGYLVDNDAIDDVAVIGIESETHG 482 +TGD+ G I DR K++I GF V P E+E L ++++ + AVIG++ G Sbjct: 411 KTGDIALATEDGMHKIVDRKKDMIIVSGFNVYPNEVEDVLAAHESVLECAVIGVDDSRSG 470 Query: 483 SEVPMACVVRSAKSKSSGTSEKDEAARIIKWLDSKVASHKRLRGGVHFVDEIPKNPSGKI 542 V A V+R + + T + +++ +++A++K L + F+ +PK+ GKI Sbjct: 471 EAVKAAIVLREPELANDATKQ-----ALLEHCRAQLAAYK-LPKIIEFMPALPKSTVGKI 524 Query: 543 LRRILKQ 549 LRR L++ Sbjct: 525 LRRELRK 531 Lambda K H 0.317 0.136 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 631 Number of extensions: 25 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 562 Length of database: 531 Length adjustment: 36 Effective length of query: 526 Effective length of database: 495 Effective search space: 260370 Effective search space used: 260370 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory