Align 3-ketoacyl-CoA thiolase, peroxisomal; Acetyl-CoA acyltransferase; Beta-ketothiolase; Peroxisomal 3-oxoacyl-CoA thiolase; EC 2.3.1.16 (characterized)
to candidate 5210417 Shew_2858 acetyl-CoA acetyltransferase (RefSeq)
Query= SwissProt::P09110 (424 letters) >lcl|FitnessBrowser__PV4:5210417 Shew_2858 acetyl-CoA acetyltransferase (RefSeq) Length = 394 Score = 268 bits (686), Expect = 2e-76 Identities = 166/394 (42%), Positives = 231/394 (58%), Gaps = 14/394 (3%) Query: 37 DVVVVHGRRTAICRAGRGGFKDTTPDELLSAVMTAVLKDVNLRPEQLGDICVGNVLQPG- 95 + V+V RT + ++ RG +T +L + ++ + ++ D +G VL G Sbjct: 3 EAVIVSTARTGMAKSFRGSLNNTKSPTMLGHCIKQAVQRAGVEGGEIDDAIMGTVLTAGT 62 Query: 96 AGAIMARIAQFLSDIPETVPLSTVNRQCSSGLQAVASIAGGIRNGSYDIGMACGVESMSL 155 AG +AR A + +P TV T++RQCSSGL A+ A I I +A G E+++ Sbjct: 63 AGMNIARNAVLAAGLPNTVSAQTIDRQCSSGLMAIGMAAKQIIVDQQQIVVAGGQENITA 122 Query: 156 AD----RGNPGNITSRLMEKEKARDCLIPMGITSENVAERFGISREKQDTFALASQQKAA 211 + N +M+ E +PM T+E+VA+ +G+SRE QD +AL SQQ+ A Sbjct: 123 VQNEYMKWAADNADPNVMQFEP--HAYMPMLKTAEHVAKVYGVSREAQDIYALMSQQRTA 180 Query: 212 RAQSKGCFQAEIVPVTTTVH-DDKGTK----RSITVTQDEGIRPSTTMEGLAKLKPAFKK 266 AQ G F EIVP TTT+ D+ TK + +T+ +DE RPSTTME L L P + Sbjct: 181 AAQEAGYFDDEIVPFTTTMAIQDRETKAISYQQVTLDRDECNRPSTTMESLQNLAPVIE- 239 Query: 267 DGSTTAGNSSQVSDGAAAILLARRSKAEELGLPILGVLRSYAVVGVPPDIMGIGPAYAIP 326 G TAGN+SQ+SDGA+A ++ R AE+ GL LG+ R AV G P+ MGIGP YAIP Sbjct: 240 GGFITAGNASQLSDGASACVVMERKLAEQRGLAPLGIYRGIAVAGCAPEEMGIGPIYAIP 299 Query: 327 VALQKAGLTVSDVDIFEINEAFASQAAYCVEKLRLPPEKVNPLGGAVALGHPLGCTGARQ 386 L++ GLT+ D+ ++EINEAFA QA YC + L + P + N GG +++GHP G TG+R Sbjct: 300 KLLKQHGLTIDDIGLWEINEAFAVQALYCRDHLGIDPARYNVNGGGISIGHPYGMTGSRL 359 Query: 387 VITLLNELKRRGKRAYGVVSMCIGTGMGAAAVFE 420 V L E KRRG + Y VV MCIG GMGAA +FE Sbjct: 360 VGHALIEGKRRGVK-YVVVGMCIGGGMGAAGLFE 392 Lambda K H 0.317 0.134 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 389 Number of extensions: 14 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 424 Length of database: 394 Length adjustment: 31 Effective length of query: 393 Effective length of database: 363 Effective search space: 142659 Effective search space used: 142659 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory