Align Ribose import ATP-binding protein RbsA 2, component of D-ribose porter (Nanavati et al., 2006). Induced by ribose (characterized)
to candidate 5208462 Shew_0974 spermidine/putrescine ABC transporter ATPase subunit (RefSeq)
Query= TCDB::Q9X051 (523 letters) >FitnessBrowser__PV4:5208462 Length = 378 Score = 121 bits (303), Expect = 5e-32 Identities = 87/271 (32%), Positives = 149/271 (54%), Gaps = 21/271 (7%) Query: 5 TEKEREVLLEARNITKTFPGVIAVNNVTLQIYKGEVCALVGENGAGKSTLMKILAGVYPD 64 T+ + EVLL+ ++K F V AV++V+L I +GE+ AL+G +G+GKSTL+++LAG Sbjct: 13 TKTQGEVLLKIERVSKLFDDVRAVDDVSLNINRGEIFALLGGSGSGKSTLLRMLAGFEKP 72 Query: 65 YEGQIFLEGKEVRFRNPREAQENGIALIPQELDLVPNLSSAENIFLSREPVNEFGVIEYQ 124 EG+I+L+G+++ P E I ++ Q L P+++ A+NI FG ++ Sbjct: 73 TEGRIYLDGQDITDMPP---YERPINMMFQSYALFPHMTVAQNI--------AFG-LKQD 120 Query: 125 KM----FEQASKLFSKLGVNIDP--KTKVEDLSTSQQQMVAIAKALSLDAKIIIMDEPTS 178 KM EQ K KL V+++P K K LS Q+Q VA+A++L+ K++++DEP Sbjct: 121 KMPKAEIEQRVKEMLKL-VHMEPYAKRKPNQLSGGQRQRVALARSLAKRPKLLLLDEPMG 179 Query: 179 AIGKR-ETEQLFNIIRSLKNEGKSVIYISHRLEEIFEIADRVVVMRDGRKVGEGPIEEFD 237 A+ K+ T+ ++ L+ G + + ++H EE +A+R+ +M DG G + Sbjct: 180 ALDKKLRTQMQLEVVDILEAVGVTCVMVTHDQEEAMTMAERIAIMNDGWIAQTGSPMDI- 238 Query: 238 HDKLVRLMVGRSIDQFFIKERATITDEIFRV 268 ++ MV I + E + DE+ V Sbjct: 239 YESPANRMVAEFIGSVNLFEGDIVEDEVDHV 269 Score = 88.6 bits (218), Expect = 4e-22 Identities = 64/211 (30%), Positives = 111/211 (52%), Gaps = 23/211 (10%) Query: 283 VDDVSFYVRKGEVLGIYGLVGAGRTELLEAIFGAHPGRTEGKVFIGGKEIKIHSPRDAVK 342 VDDVS + +GE+ + G G+G++ LL + G TEG++++ G++I P + Sbjct: 36 VDDVSLNINRGEIFALLGGSGSGKSTLLRMLAGFEKP-TEGRIYLDGQDITDMPPYERPI 94 Query: 343 NGIGLVPEDRKTAGLILQMSVLHNITLPSVVMKLIVRKFGLIDSQLEK-EIVRSFIEKLN 401 N + ++ L M+V NI FGL ++ K EI + E L Sbjct: 95 NMMF------QSYALFPHMTVAQNIA------------FGLKQDKMPKAEIEQRVKEMLK 136 Query: 402 IKTPSPY--QIVENLSGGNQQKVVLAKWLAIKPKVLLLDEPTRGIDVNAKSEI-YKLISE 458 + PY + LSGG +Q+V LA+ LA +PK+LLLDEP +D ++++ +++ Sbjct: 137 LVHMEPYAKRKPNQLSGGQRQRVALARSLAKRPKLLLLDEPMGALDKKLRTQMQLEVVDI 196 Query: 459 MAVSGMGVVMVSSELPEILAMSDRILVMSEG 489 + G+ VMV+ + E + M++RI +M++G Sbjct: 197 LEAVGVTCVMVTHDQEEAMTMAERIAIMNDG 227 Lambda K H 0.317 0.137 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 406 Number of extensions: 22 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 523 Length of database: 378 Length adjustment: 32 Effective length of query: 491 Effective length of database: 346 Effective search space: 169886 Effective search space used: 169886 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory