Align Threonine dehydratase 2 biosynthetic, chloroplastic; SlTD2; Threonine deaminase 2; EC 4.3.1.17; EC 4.3.1.19 (characterized)
to candidate 5207772 Shew_0293 threonine dehydratase (RefSeq)
Query= SwissProt::P25306 (595 letters) >lcl|FitnessBrowser__PV4:5207772 Shew_0293 threonine dehydratase (RefSeq) Length = 516 Score = 389 bits (1000), Expect = e-112 Identities = 215/498 (43%), Positives = 306/498 (61%), Gaps = 6/498 (1%) Query: 97 YLVDILASPVYDVAIESPLELAEKLSDRLGVNFYIKREDKQRVFSFKLRGAYNMMSNLSR 156 YL IL S VYDVA +PL KLS RLG ++KRED Q V SFKLRGAYN ++ LS+ Sbjct: 16 YLQKILLSSVYDVAKVTPLSSLNKLSARLGCQVFLKREDMQPVHSFKLRGAYNRIAELSQ 75 Query: 157 EELDKGVITASAGNHAQGVALAGQRLNCVAKIVMPTTTPQIKIDAVRALGGDVVLYGKTF 216 EE +GV+ ASAGNHAQGVA++ A IVMP TTP IK+DAVR LGG VVLYG++F Sbjct: 76 EECQRGVVCASAGNHAQGVAMSASARGVSAVIVMPQTTPDIKVDAVRRLGGTVVLYGQSF 135 Query: 217 DEAQTHALELSEKDGLKYIPPFDDPGVIKGQGTIGTEINRQLKDIHAVFIPVGGGGLIAG 276 D A HA +L+ +G Y+ PFDD VI GQGT+ E+ +Q +D+ VF+PVGGGGLIAG Sbjct: 136 DMANEHAQQLARDEGRIYVAPFDDEAVIAGQGTVAQEMLQQQRDLEVVFVPVGGGGLIAG 195 Query: 277 VATFFKQIAPNTKIIGVEPYGAASMTLSLHEGHRVKLSNVDTFADGVAVALVGEYTFAKC 336 +A ++K + P KIIGVEP +A + +L RV LS V FADGVAV +G F Sbjct: 196 IAAYYKAVMPQVKIIGVEPEDSACLKAALEADERVVLSQVGLFADGVAVKQIGAEPFRLA 255 Query: 337 QELIDGMVLVANDGISAAIKDVYDEGRNILETSGAVAIAGAAAYCEFYKIKNENIVAIAS 396 +E +D +V V +D I AA+KD++++ R I E +GA+++AG Y + K + + AI S Sbjct: 256 REYVDQVVTVTSDEICAAVKDIFEDTRAIAEPAGALSLAGLKKYIG-DEGKGQKVAAILS 314 Query: 397 GANMDFSKLHKVTELAGLGSGKEALLATFMVEQQGSFKTFVGLVGSLNFTELTYRFTSER 456 GAN++F L V+E LG KEA+LA + E G F F L+ TE YRF+S R Sbjct: 315 GANVNFHSLRYVSERCELGEQKEAILAVKVPEHPGIFLRFCELLEKRAMTEFNYRFSS-R 373 Query: 457 KNALILYRVNVDK-ESDLEKMIEDMKSSNMTTLNLSHNELVVDHLKHLVGG--SANISDE 513 + A++ + + +++L++++ ++ +LSH+E H++++VGG + + Sbjct: 374 EKAVVFAGIRLSHGQAELDEIVARLEGDGFEVQDLSHDETAKLHVRYMVGGLPPEPLQER 433 Query: 514 IFGEFIVPEKAETLKTFLDAFSPRWNITLCRYRNQGDINASLLMGFQVPQAEMDEFKNQA 573 +F F PE L FL +WNI+L YRN G +L GF+VP+++ F+ Sbjct: 434 LF-SFEFPEHPGALFKFLTTLRSKWNISLFHYRNHGAAYGRVLAGFEVPESDSVAFQQFL 492 Query: 574 DKLGYPYELDNYNEAFNL 591 +LG+ Y+ + + A+ L Sbjct: 493 TELGFVYQEETQSPAYKL 510 Lambda K H 0.317 0.135 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 662 Number of extensions: 22 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 595 Length of database: 516 Length adjustment: 36 Effective length of query: 559 Effective length of database: 480 Effective search space: 268320 Effective search space used: 268320 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory