Align Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase (EC 2.3.1.168) (characterized)
to candidate 5209456 Shew_1927 dihydrolipoamide acetyltransferase (RefSeq)
Query= reanno::Marino:GFF1672 (378 letters) >lcl|FitnessBrowser__PV4:5209456 Shew_1927 dihydrolipoamide acetyltransferase (RefSeq) Length = 520 Score = 367 bits (942), Expect = e-106 Identities = 198/377 (52%), Positives = 255/377 (67%), Gaps = 5/377 (1%) Query: 1 MTDKAMVEITAPKAGRVTKLYHQQQAMAKVHAPLFAFIPRDREEPEEARTKPEPAAQLST 60 MTDKA+V+I A K+G+V KL++++ +A+VH PLF+ E A A + Sbjct: 148 MTDKALVQIPAIKSGKVVKLHYRKGQLAQVHTPLFSIEVESEEGIVAAPVADTAPAAVDH 207 Query: 61 ATASPVAAASRQRIPASPAVRRLVREHELNLSDIQGSGKDGRVLKADVLAYIEEGPKQAQ 120 A A + ASPAVRRL R ++++LS + GSGK GRV K DV + + + Sbjct: 208 EEVELHAPAGNGKALASPAVRRLARSYDIDLSLVPGSGKHGRVYKEDVERF--RSGEAVK 265 Query: 121 NQAPADDAQTATTRSARRAPAADQEARVEPIRGIKAAMAKSMVKSATTIPHFIYSEDIDV 180 +A AQ+ T + A D RVEPIRG+KA MAK M +S +TIPHF Y E++D+ Sbjct: 266 AKAAKAQAQSEPTAAPIAVSAGD---RVEPIRGVKAVMAKMMTESVSTIPHFTYCEELDL 322 Query: 181 TDLLKLREQLKPEAEARGSRLTLMPFFMKAMALAVQEFPVLNSQLNDDVTEIHYLPQCNI 240 T+L+ LRE +K + +LT+MPFFMKAM+LA+ +FP +NS++NDD TE +L NI Sbjct: 323 TELVALRESMKARYSSDDLKLTMMPFFMKAMSLALTQFPGINSRVNDDCTEQTFLASHNI 382 Query: 241 GMAVDGKAGLTVPNIKGVESLSLLGIADEVARLTEAARSGRVSQEDLKGGTITISNIGAL 300 GMAVD K GL VPN+K V+ S+L +A E+ RLT+ ARSGRVS DLKGG+I+ISNIGAL Sbjct: 383 GMAVDSKVGLLVPNVKDVQQKSILEVAAEITRLTKDARSGRVSPADLKGGSISISNIGAL 442 Query: 301 GGTYTAPIINAPEVAIVALGRTQKLPRFDANGQVVERAIMTVSWAGDHRIIDGGTIARFC 360 GGT PIIN PEVAIVALG+ Q LPRF+ G+V R IM +SW+GDHR+IDGGTIARFC Sbjct: 443 GGTVATPIINKPEVAIVALGKLQTLPRFNDKGEVEARKIMQISWSGDHRVIDGGTIARFC 502 Query: 361 NRWKGYLESPQTMLLHM 377 N WK YLESPQ MLL M Sbjct: 503 NLWKQYLESPQEMLLAM 519 Score = 40.0 bits (92), Expect = 1e-07 Identities = 27/89 (30%), Positives = 45/89 (50%), Gaps = 1/89 (1%) Query: 1 MTDKAMVEITAPKAGRVTKLYHQQQAMAKVHAPLFAFIPRDREEPEEARTKPEPAAQLST 60 MTDKA+V+I A G + KL++++ +A VH PL++ + D E +A T+ + Sbjct: 40 MTDKALVQIPAVHGGVIKKLHYKKGDIAIVHEPLYS-VEIDGELDGDATTESAAEEAVVQ 98 Query: 61 ATASPVAAASRQRIPASPAVRRLVREHEL 89 + + PV R P + + E EL Sbjct: 99 SDSQPVVGGKRVEEFLLPDIGEGIVECEL 127 Lambda K H 0.316 0.131 0.367 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 505 Number of extensions: 21 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 378 Length of database: 520 Length adjustment: 32 Effective length of query: 346 Effective length of database: 488 Effective search space: 168848 Effective search space used: 168848 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory