Align Malonate-semialdehyde dehydrogenase 1; MSA dehydrogenase 1; EC 1.2.1.-; Methylmalonate-semialdehyde dehydrogenase 1; MMSA dehydrogenase 1; MSDH 1; EC 1.2.1.27 (uncharacterized)
to candidate 5211158 Shew_3574 aldehyde dehydrogenase (RefSeq)
Query= curated2:Q81QR5 (486 letters) >FitnessBrowser__PV4:5211158 Length = 506 Score = 213 bits (541), Expect = 2e-59 Identities = 144/469 (30%), Positives = 231/469 (49%), Gaps = 23/469 (4%) Query: 8 RVKNHINGEWVESTGTEVEAVPNPATGKIIAYVPLSPKEDVEKAVEAAKAAYETWSKVPV 67 R N I G+WV G E +P G++ V S + D+E A++AA AA + W K V Sbjct: 18 RYDNFIGGQWVAPVGGEYFDNRSPVDGQVFCQVARSDERDIELALDAAHAAKDAWGKTSV 77 Query: 68 PNRSRQLYKYLQLLQENKEELAKIITLENGKTLTDA-TGEVQRGIEAVELATSAPNLMMG 126 RS L K +++N E LA T ENGK + + ++ ++ G Sbjct: 78 TERSNLLLKIADRVEQNLEFLAVAETWENGKAVRETLNADLPLFVDHFRYFAGCIRAQEG 137 Query: 127 QALPNIASGIDGSIWRY----PIGVVAGITPFNFPMMIPLWMFPLAIACGNTFVLKTSER 182 A+ ID + Y P+GVV I P+NFP+++ W A+A GN VLK +E+ Sbjct: 138 S-----AADIDNNTVSYHFPEPLGVVGQIIPWNFPLLMAAWKIAPALAAGNCIVLKPAEQ 192 Query: 183 TPLLAERLVELFYEAGFPKGVLNLVQG-GKDVVNSILENKDIQAVSFVGSEPVARYVYET 241 TP+ +VEL + P GVLN+V G G + ++ +K I ++F GS + ++ + Sbjct: 193 TPVSILVMVELIQDL-LPAGVLNIVNGFGTEAGQALAVSKRIAKLAFTGSTQIGHHILKC 251 Query: 242 GTKHGKRVQALAGAKNHAIVMPDC------NLEKTVQGVIGSAFASSGERCMACSVVAVV 295 + G K+ I D L+K V+G++ AF + GE C S V + Sbjct: 252 AAESLIPSTVELGGKSPNIYFADVMEQEDEYLDKAVEGML-LAFFNQGEVCTCPSRVLIA 310 Query: 296 DEIADEFIDVLVAETKKLKVGDGFHEDNYVGPLIRESHKERVLGYINSGVADGATLLVDG 355 + I D+FID ++A K +K G+ D VG + +++L Y+ G +GA +L+ G Sbjct: 311 ESIYDKFIDKVIARAKTIKQGNPLDTDTQVGAQASQEQFDKILSYLEIGRNEGAEVLIGG 370 Query: 356 R--KIKEEVGEGYFVGATIFDGVNQEMKIWQDEIFAPVLSIVRVKDLEEGIKLTNQSKFA 413 ++ + G+++ TI G N +M+++Q+EIF PV+S+ KD E + + N +++ Sbjct: 371 TSCQLSGDQSSGFYIEPTILKGHN-KMRVFQEEIFGPVISVTTFKDEAEALAIANDTEYG 429 Query: 414 NGAVIYTSNGKHAQTFRDNIDAGMIGVNVNVPAPMAFFAFAGNKASFFG 462 GA ++T + AQ I AG + +N P A AF G K S G Sbjct: 430 LGAGVWTRDMNRAQRMGRGIQAGRVWINCYHAYP-AHAAFGGYKKSGIG 477 Lambda K H 0.317 0.135 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 597 Number of extensions: 31 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 506 Length adjustment: 34 Effective length of query: 452 Effective length of database: 472 Effective search space: 213344 Effective search space used: 213344 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory