Align 4-(gamma-glutamylamino)butanal dehydrogenase (EC 1.2.1.99) (characterized)
to candidate CA265_RS14635 CA265_RS14635 aldehyde dehydrogenase
Query= BRENDA::P23883 (495 letters) >lcl|FitnessBrowser__Pedo557:CA265_RS14635 CA265_RS14635 aldehyde dehydrogenase Length = 501 Score = 319 bits (817), Expect = 2e-91 Identities = 185/483 (38%), Positives = 277/483 (57%), Gaps = 16/483 (3%) Query: 23 FINGEYTAAAENETFETVDPVTQAPLAKIARGKSVDIDRAMSAARGVFERGDWSLSSPAK 82 +I G++ A + F+ + P+ K A D++ A+ AA F+ WS +S + Sbjct: 17 YIGGKFVAPVKGAYFDNISPIDGKVFTKAAHSTKEDLELAVDAAHEAFKT--WSKTSSTE 74 Query: 83 RKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLRDDIPGAARAIRWYAEAIDKVYGEV 142 R +LNK+A ME + E LA +ET+D GK +R +L D+P R++A I G + Sbjct: 75 RSIILNKIAQRMEDNLEYLAAVETIDNGKAVRETLAADLPLGVDHFRYFAGVIRAEEGSL 134 Query: 143 ATTSSHELAMIVREPVGVIAAIVPWNFPLLLTCWKLGPALAAGNSVILKPSEKSPLSAIR 202 + + +++IV EP+GV+A I+PWNFPLL+ WKL PALAAGN V+LKP+E +P+S + Sbjct: 135 SELDQNTVSLIVHEPIGVVAQIIPWNFPLLMGIWKLAPALAAGNCVVLKPAESTPVSIMV 194 Query: 203 LAGLAKEAGLPDGVLNVVTGFGHEAGQALSRHNDIDAIAFTGSTRTGKQLLKDAGDSNMK 262 L L + LP GV+NVV GFG E G+AL + + AFTGST TG+ +++ A + N+ Sbjct: 195 LMELIGDL-LPPGVVNVVNGFGSELGRALVTNPKVSKAAFTGSTPTGRLVMQYATE-NII 252 Query: 263 RVWLEAGGKSANIVF----ADCPDLQQAASATAAGIFYNQGQVCIAGTRLLLEESIADEF 318 V LE GGKS NI F A+ A A NQG++C +RLL++E I ++F Sbjct: 253 PVTLELGGKSPNIFFSSVMAEDDAFLDKAVEGAVMFALNQGEICTCPSRLLIQEDIYEKF 312 Query: 319 LALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSVHSFIREGESKGQLLLDG-------R 371 +A + ++ + + G PLD MG + + ++I+ G+ +G +L G Sbjct: 313 IAKVIERTKAIKIGSPLDRTVMMGAQASKIQFEKIAAYIKLGKEEGAEVLTGGEINELPG 372 Query: 372 NAGLAAAIGPTIFVDVDPNASLSREEIFGPVLVVTRFTSEEQALQLANDSQYGLGAAVWT 431 G I PTIF + + +EEIFGPVL VT F + E+A+++AND+ YGLGA VWT Sbjct: 373 ELGGGYYIKPTIFKGHN-KMRIFQEEIFGPVLAVTTFKTVEEAIEIANDTLYGLGAGVWT 431 Query: 432 RDLSRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALEKFTELKTIWI 491 RD +++ R ++AG V+VN Y+ PFGGYKQSG GR+ L + + K + I Sbjct: 432 RDAHELYQVPRAIQAGRVWVNQYHAYPAGAPFGGYKQSGVGRENHKMMLGHYRQTKNMLI 491 Query: 492 SLE 494 S + Sbjct: 492 SYD 494 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 521 Number of extensions: 18 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 501 Length adjustment: 34 Effective length of query: 461 Effective length of database: 467 Effective search space: 215287 Effective search space used: 215287 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory