Align Galactarate dehydratase (L-threo-forming); GalcD; EC 4.2.1.42 (characterized)
to candidate CA265_RS19875 CA265_RS19875 altronate hydrolase
Query= SwissProt::P39829 (523 letters) >lcl|FitnessBrowser__Pedo557:CA265_RS19875 CA265_RS19875 altronate hydrolase Length = 548 Score = 232 bits (591), Expect = 3e-65 Identities = 171/532 (32%), Positives = 254/532 (47%), Gaps = 58/532 (10%) Query: 16 IKVHDTDNVAIIVNDNGLKAGTRFPDGLELI--EHIPQGHKVALLDIPANGEIIRYGEVI 73 +K+H DNV + + N K T DG E I + I HK + D+ A II YG ++ Sbjct: 6 LKIHPNDNVLVALQ-NLAKGETVIYDGHEYILQDDIQAKHKFFMQDMNAGDHIIMYGVLV 64 Query: 74 GYAVRAIPRGSWIDESMVVLPEAP----PLHTLPLATKVPEPLPPLEGYTFEGYRNADGS 129 G A I +G +D P P H A V + EG TF GY +DG Sbjct: 65 GKAQHFILKGGLMDTENTKHASDPYEFRPYHYEWHAPDVSK----FEGRTFNGYIRSDGR 120 Query: 130 VGTKNLLGITTSVHCVAGVVDYVVKIIERDL----LPKYP-------------------- 165 VGT N +V C +D + + + +L KY Sbjct: 121 VGTANYWLFIPTVFCENRNLDVIREALHNELGYAVTDKYKSYAHQLVEAYKNGEILAEAD 180 Query: 166 ----------------NVDGVVGLNHLYGCGVAINAPAAVVPIRTIHNISLNPNFGGEVM 209 NVDG+ LNH GCG AAV+ + + + +PN G V Sbjct: 181 PSSIGLANPSANRVFKNVDGIKFLNHQGGCG-GTRQDAAVLS-KLLAAYADHPNVAG-VT 237 Query: 210 VIGLGCEKLQPERLLTGTDDVQ-AIPVESASIVSLQDEKHVGFQSMVEDILQIAERHLQK 268 V+ LGC+ LQ + + DD++ P + + ++ + +V++ ++ L + Sbjct: 238 VLSLGCQNLQVKDFM---DDLKHRSPNFDKPLFVFEQQQSQSEEQLVKEAIRKTFIGLTE 294 Query: 269 LNQRQRETCPASELVVGMQCGGSDAFSGVTANPAVGYASDLLVRCGATVMFSEVTEVRDA 328 +N+ +R+ P S+LV+G++CGGSD FSG++ANPAVGY SDLLV G TV+ +E E+ A Sbjct: 295 INKIERQPAPLSKLVLGVKCGGSDGFSGISANPAVGYTSDLLVALGGTVLLAEFPELCGA 354 Query: 329 IHLLTPRAVNEEVGKRLLEEMEWYDNYLNMGKTDRSANPSPGNKKGGLANVVEKALGSIA 388 L R +E ++ ++ M Y+ + NPSPGN K GL K+ G+ Sbjct: 355 EQQLIDRTKDETAARKFIQLMTAYNQSAENVGSGFFMNPSPGNIKDGLITDAIKSTGAAK 414 Query: 389 KSGKSAIVEVLSPGQRPTKRGLIYAATPASDFVCGTQQVASGITVQVFTTGRGTPYGLMA 448 K G S + +VL + TK GL TP +D T + ASG T+ +FTTG GTP G Sbjct: 415 KGGTSPVEDVLDYTEPATKPGLNLVCTPGNDVEATTGKAASGATLILFTTGLGTPTGNPV 474 Query: 449 VPVIKMATRTELANRWFDLMDINAGTIATGEETIEEVGWKLFHFILDVASGK 500 P IK++T L R D++DIN G + GE+TIE++G + + + ASG+ Sbjct: 475 CPTIKVSTNNALTKRMGDIIDINCGPVIEGEKTIEQMGEDILEYCIKAASGE 526 Lambda K H 0.317 0.136 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 735 Number of extensions: 37 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 523 Length of database: 548 Length adjustment: 35 Effective length of query: 488 Effective length of database: 513 Effective search space: 250344 Effective search space used: 250344 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory