Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate CA265_RS02215 CA265_RS02215 acetyl-CoA carboxylase biotin carboxylase subunit
Query= reanno::Smeli:SM_b21124 (662 letters) >lcl|FitnessBrowser__Pedo557:CA265_RS02215 CA265_RS02215 acetyl-CoA carboxylase biotin carboxylase subunit Length = 503 Score = 476 bits (1226), Expect = e-139 Identities = 254/467 (54%), Positives = 324/467 (69%), Gaps = 6/467 (1%) Query: 3 SKLLIANRGEIACRIIRTARRLGIRTVAVYSDADGDALHVALADEAIRIGGAPAAESYLA 62 SKLL+ANRGEIA RI+R+A+ +GI+TVAV+S+AD +ALHV ADEA+ IG AP+ +SYL Sbjct: 12 SKLLVANRGEIALRIMRSAKEMGIKTVAVFSEADRNALHVRYADEAVCIGPAPSNQSYLV 71 Query: 63 SAPIVQAARSVGAQAIHPGYGFLSENADFAEAVAEAGMIFVGPPPAAIRAMGLKDAAKAL 122 I+ A + GA+AIHPGYGFLSENA FA+ VA+AG+I VGP P A+ MG K +AKA Sbjct: 72 GEKIIGACKLTGAEAIHPGYGFLSENAGFAQMVADAGLILVGPSPQAMETMGNKLSAKAA 131 Query: 123 MERSGVPVVPGYHGEEQDASFLADRAREIGYPVLIKARAGGGGKGMRRVERQEDFGPALE 182 + +P+VPG QD + RA E+G+P+LIKA AGGGGKGMR VER EDF ++ Sbjct: 132 ALKYNIPMVPGTEEAIQDVNEAKQRAIEVGFPILIKAAAGGGGKGMRIVERAEDFEEQMQ 191 Query: 183 AARREAESAFGDGSVLLERYLTKPRHIEMQVFGDRHGNIVHLFERDCSLQRRHQKVIEEA 242 A EA SAFGDG+V +ERY+T PRHIE+QV GD HGNIVHLFER+CS+QRRHQKVIEEA Sbjct: 192 LAVSEATSAFGDGAVFIERYVTSPRHIEIQVLGDNHGNIVHLFERECSVQRRHQKVIEEA 251 Query: 243 PAPGMTAEVRRAMGDAAVRAAQAIGYVGAGTVEFIADVTNGLWPDHFYFMEMNTRLQVEH 302 P+ +T E+R+ MG AV A+++ Y GAGTVEFI D F+F+EMNTRLQVEH Sbjct: 252 PSSVLTEEIRQRMGKCAVDVARSVNYTGAGTVEFILDENL-----DFFFLEMNTRLQVEH 306 Query: 303 PVTEAITGIDLVEWQLRVASGEPLPKKQADISMNGWAFEARLYAEDPARGFLPATGRLTE 362 PVTE ITGIDLV+ QL++ASGE L Q D+ ++G A E R+YAEDPA FLP G L Sbjct: 307 PVTELITGIDLVKEQLKIASGEKLSFSQEDLKISGHAVELRVYAEDPANNFLPDIGTLQT 366 Query: 363 LSFPEGTS-RVDSGVRQGDTITPYYDPLIAKLIVHGQNRSAALGRLQDALKECRIGGTVT 421 + P+G RVD G QG I YYDP+IAKLI +G++R A+ R+ A++E I G T Sbjct: 367 YNTPKGNGVRVDDGFEQGMEIPIYYDPMIAKLITYGKDREEAIERMVRAIEEYDITGIET 426 Query: 422 NRDFLIRLTEEHDFRSGHPDTGLIDREIERLTAPVAPGDEALALAAI 468 F + + F++G+ DT + + + + V EAL A I Sbjct: 427 TLGFGKFVMQHEAFKTGNFDTHFVGKYFKPESLKVQDETEALIAAVI 473 Lambda K H 0.319 0.135 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 740 Number of extensions: 31 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 662 Length of database: 503 Length adjustment: 36 Effective length of query: 626 Effective length of database: 467 Effective search space: 292342 Effective search space used: 292342 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory