Align D-2-hydroxyglutarate--pyruvate transhydrogenase DLD2; D-2HG--pyruvate transhydrogenase DLD2; Actin-interacting protein 2; D-lactate dehydrogenase [cytochrome] 2, mitochondrial; D-lactate ferricytochrome C oxidoreductase; D-LCR; EC 1.1.99.40; EC 1.1.2.4 (characterized)
to candidate CA265_RS09620 CA265_RS09620 FAD-binding oxidoreductase
Query= SwissProt::P46681 (530 letters) >FitnessBrowser__Pedo557:CA265_RS09620 Length = 467 Score = 223 bits (569), Expect = 9e-63 Identities = 147/475 (30%), Positives = 242/475 (50%), Gaps = 18/475 (3%) Query: 58 FKKLTSDDLNYFKSILSEQEILRASESEDLSFYNEDWMRKYKGQSKLVLRPKSVEKVSLI 117 F K+ + L K+ + +++ ++++ L Y+ D + Q ++V++P + E+VS + Sbjct: 3 FTKINPEILAEIKAAVGAEKVF--TDADSLENYSHDETEDLRYQPEVVVKPTTPEEVSAL 60 Query: 118 LNYCNDEKIAVVPQGGNTGLVGGSVPIFDELILSLANLNKIRDFDPVSGILKCDAGVILE 177 L CN + V P+GG TGL G ++PI+ + LS+ I D D + + GVI E Sbjct: 61 LKICNAHHVPVTPRGGGTGLSGAALPIYGGISLSMEKFKAILDIDTENLQATVEPGVITE 120 Query: 178 NANNYVMEQNYMFPLDLGAKGSCHVGGVVATNAGGLRLLRYGSLHGSVLGLEVVMPNGQI 237 N V E+ ++P+D +KGSC +GG VA +GG R+++YG++ +L LEVV+PNG I Sbjct: 121 EFINAVAEKGLLYPVDPSSKGSCFIGGNVAHGSGGPRVVKYGTIREYILNLEVVLPNGDI 180 Query: 238 VNSMHSMRKDNTGYDLKQLFIGSEGTIGIITGVSILTVPKPKAFNVSYLSVESFEDVQKV 297 + + + K +GY+L QL IGSEGT+ ++T + +PKP + S + ED Sbjct: 181 IWTGANTLKYASGYNLTQLMIGSEGTLAVVTKIVTKLLPKPSQSVLMMGSFSTNEDACAA 240 Query: 298 FVRARQELSEILSAFEFMDAKSQVLAKSQLKDAAFPLEDEHPFYILIETSGSNKDHDDSK 357 V A SA EFM+ K V + D F L+D+ ++IE G + D Sbjct: 241 -VSAIFRAGVTPSALEFMERKG-VEWVIKFDDIKFDLKDDVAALLMIEFDGDDLDDIFKN 298 Query: 358 LETFLENVMEEGIVTDGVVAQDETELQNLWKWREMIPEASQANGGVYKYDVSLPLKDLYS 417 E V+EE T+ + A + + LW+ R + E+ ++N + D +P L Sbjct: 299 CEK-TNIVLEEHNCTEVLFADTAAQKEELWRMRRTMAESVKSNSVYKEEDTVVPRAALPK 357 Query: 418 LVEATNARLSEAELVGDSPKPVVGAIGYGHVGDGNLHLNVAVREYNKNIEKTLEPF---- 473 LV +G K ++ YGH GDGNLH+N+ + K F Sbjct: 358 LVNGIKE-------IG--AKYGFESVCYGHAGDGNLHVNIIKAGMSDEDWKNKLKFGIAE 408 Query: 474 VYEFVSSKHGSVSAEHGLGFQKKNYIGYSKSPEEVKMMKDLKVHYDPNGILNPYK 528 ++E ++ G++S EHG+G +K ++ S + +M+ +K +DP GILNP K Sbjct: 409 IFELTTALGGTLSGEHGIGLVQKEFMPIKYSEIHLNLMRGIKNIFDPKGILNPGK 463 Lambda K H 0.316 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 610 Number of extensions: 30 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 530 Length of database: 467 Length adjustment: 34 Effective length of query: 496 Effective length of database: 433 Effective search space: 214768 Effective search space used: 214768 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory