Align propionyl-CoA carboxylase α subunit (EC 6.4.1.3) (characterized)
to candidate CA265_RS10640 CA265_RS10640 methylcrotonoyl-CoA carboxylase
Query= metacyc::MONOMER-17283 (535 letters) >FitnessBrowser__Pedo557:CA265_RS10640 Length = 542 Score = 545 bits (1405), Expect = e-159 Identities = 267/528 (50%), Positives = 372/528 (70%), Gaps = 16/528 (3%) Query: 14 DFQANFAYHQSLAADLRERLAQIRQGGGAEQRRRHEERGKLFVRDRIDTLIDPDSSFLEI 73 +F N ++ L +L+ RL +I GGG + + +E+GKL R+RI LID DS+FLE+ Sbjct: 4 EFNKNEDVNKQLVYELKTRLKKIYLGGGEKNAAKQKEKGKLLARERIAYLIDKDSNFLEV 63 Query: 74 GALAAYNVYDEE--VPAAGIVCGIGRVAGRPVMIIANDATVKGGTYFPLTVKKHLRAQEI 131 GA A +Y E+ P+AG+VCGIG V+GR MI+ANDATVK G +FP+T KK+LRAQEI Sbjct: 64 GAFTADGMYAEQGGCPSAGVVCGIGYVSGRQCMIVANDATVKAGAWFPMTAKKNLRAQEI 123 Query: 132 ARENRLPCIYLVDSGGAYLPLQSEVFPDRDHFGRIFYNQAQMSAEGIPQIACVMGSCTAG 191 A ENRLP IYLVDS G YLP+Q E+FPD++HFGR+F N A MS+EGI QI+ +MG+C AG Sbjct: 124 AMENRLPVIYLVDSAGVYLPMQDEIFPDKEHFGRMFRNNAIMSSEGIVQISAIMGACVAG 183 Query: 192 GAYVPAMSDEVVIVKGNGTIFLGGPPLVKAATGEEVTAEELGGADVHTRISGVADYFAND 251 GAY+P MSDE +IV G++FL G LVK+A GEEV E LGGA H ISGV DY + Sbjct: 184 GAYLPIMSDEAMIVDKTGSVFLAGSYLVKSAIGEEVDNETLGGATTHCEISGVTDYKHLN 243 Query: 252 DREALAIVRDIVAHLGPRQRANWELRDPEPPRYDPREIYGILPRDFRQSYDVREVIARIV 311 D+ L +R+I++ LG Q A ++ P P+ E+YGILP + + Y++ ++I R+V Sbjct: 244 DQACLDSIRNIMSMLGAPQNAGFDRIKPAKPKEKEEELYGILPENRDKPYEIMDIINRLV 303 Query: 312 DGSRLHEFKTRYGTTLVCGFAHIEGFPVGILAN--------------NGILFSESALKGA 357 DGS E+K YG ++VCG I+G+ VGI+AN G+++S+SA K Sbjct: 304 DGSEFEEYKKGYGQSIVCGLGRIDGWAVGIVANQRKVVKSKKGEMQFGGVIYSDSADKAT 363 Query: 358 HFIELCCARNIPLVFLQNITGFMVGKQYENGGIAKDGAKLVTAVSCANVPKFTVIIGGSF 417 FI C + IPLVFLQ++TGFMVG + E+GGI KDGAK+V AV+ + VPKFT+++G S+ Sbjct: 364 RFIMNCNQKKIPLVFLQDVTGFMVGSRSEHGGIIKDGAKMVNAVANSVVPKFTIVLGNSY 423 Query: 418 GAGNYGMCGRAYQPRQLWMWPNARISVMGGTQAANVLLTIRRDNLRARGQDMTPEEQERF 477 GAGNY MCG+AY PR ++ WP A+I+VMGG+QAA LL I+ +L+A+G+ +TPE++ Sbjct: 424 GAGNYAMCGKAYDPRLIYAWPTAKIAVMGGSQAAKTLLQIQEASLKAKGEVITPEKEAEL 483 Query: 478 MAPILAKYEQEGHPYYASARLWDDGVIDPVETRRVLALGLAAAAEAPV 525 + I +Y+ + PYYA++RLW DG+IDP+ETR+V+++G+ AA ++P+ Sbjct: 484 LKEITDRYDSQTTPYYAASRLWVDGIIDPLETRKVISMGIEAANQSPI 531 Lambda K H 0.322 0.139 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 767 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 542 Length adjustment: 35 Effective length of query: 500 Effective length of database: 507 Effective search space: 253500 Effective search space used: 253500 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory