Align Probable phosphoribomutase; PRM; Phosphoglucomutase 3 homolog; PGM 3 homolog; EC 5.4.2.7 (characterized)
to candidate CA265_RS09660 CA265_RS09660 phosphoglucomutase
Query= SwissProt::O74478 (587 letters) >FitnessBrowser__Pedo557:CA265_RS09660 Length = 578 Score = 300 bits (767), Expect = 1e-85 Identities = 196/565 (34%), Positives = 294/565 (52%), Gaps = 19/565 (3%) Query: 1 MDPILQELVDEWFKLDQDETTRNEVSQLIKAEDYATLKQIMHPRIGFGTSGLRAEIGAGF 60 +D Q +++W + DE T+ E+ L+ + L + + FGT GLR +GAG Sbjct: 4 IDQSTQATINQWLSGNYDENTKAEIQALVDKDATTELTDAFYRSLEFGTGGLRGIMGAGS 63 Query: 61 ARMNCLTVIQASQGFAEYLLQTVPSAAKLGVVIGHDHRHKSNTFARLTAAVFLQKGFKTY 120 R+N T+ A+QG A YL P+ K+ V I HD R+ S+ FA++TA VF G Y Sbjct: 64 NRINKYTIGTATQGLANYLNNKYPNE-KIKVAIAHDSRNNSDYFAKITADVFSANGIHVY 122 Query: 121 FFDHLVHTPLVPFAVKTLGTAAGVMITASHNPAAYNGYKVYWGNGCAIIPPHDKGIAACI 180 FF L TP + FAV+ G +GVM+TASHNP YNGYK Y +G P DK + + Sbjct: 123 FFSALRPTPELSFAVRHFGCKSGVMLTASHNPKEYNGYKAYGADGGQFTSPDDKLVIDEV 182 Query: 181 E--KNLTPITWDKNLVENHKLADRDFAVGLLKNYWSQLHEFHSENNFSLEMKSLKFVYTP 238 KN+ + +D+ + N +L + + K Y + LK VY+P Sbjct: 183 NKIKNIDEVKFDR-VEANIELIGEE----VDKLYLDGITALSISPEAIKRQHDLKIVYSP 237 Query: 239 IHGVGLPFVTSALHLFGEQGDMISVPLQDSPNPDFPTVKFPNPEEEGALDLAYEQADANG 298 IHG G+ V AL FG ++ V Q +P+ +FPTV +PNPEE+ AL LA +A Sbjct: 238 IHGTGITLVPKALAQFGFT-NVTLVEEQSTPDGNFPTVVYPNPEEKDALTLAMNKAKEID 296 Query: 299 ISYVLATDPDADRFAFAEK-INGAWRRFTGDEVGCILAYFIFQEYKNVGKPIDDFYVLST 357 VLATDPDADR A K NG W G++ GC+L ++ ++ GK + +++ T Sbjct: 297 ADLVLATDPDADRVGIAVKDNNGEWVLLNGNQTGCLLINYLLSAWEANGKLDGNQFIVKT 356 Query: 358 TVSSAMVKSMAKVEGFHHVETLTGFKWLGNKALELEKQGKFIGLAYEEALGYMVGSIVRD 417 V+S +++ +AK + + TLTGFK++G ELE + FIG EE+ GY++G +VRD Sbjct: 357 IVTSNLIEEIAKKKDVTYYNTLTGFKYIGQLMTELEGKKYFIG-GGEESYGYLIGDLVRD 415 Query: 418 KDGVNALITFLHLLKRLQLQNLSITEVFEQMSKKYGYYTTQNSYFLSRDTPKLRALVDAL 477 KD V + + + + S+ M +YG Y L T K ++ + + Sbjct: 416 KDAVVSAAFISEMTAYYKDKGASLYNALLDMYVEYGLYKED----LVSLTKKGKSGAEEI 471 Query: 478 RHYDTK--SGYPATLGSKKITNVRDLTTGYDSSSTDGKATLPVSKSSDNVTFELENGEVI 535 + K PATLG K++ ++D ++ T GK + +SD + F E+G ++ Sbjct: 472 KAMMVKFRENPPATLGGSKVSVLKDYELSQETDLTTGKVSKLDYPTSDVLQFITEDGSIV 531 Query: 536 MTIRTSGTEPKLKFYICARGHSLED 560 + R SGTEPK+KFY C+ L D Sbjct: 532 -SARPSGTEPKIKFY-CSVNAPLAD 554 Lambda K H 0.318 0.135 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 808 Number of extensions: 48 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 587 Length of database: 578 Length adjustment: 36 Effective length of query: 551 Effective length of database: 542 Effective search space: 298642 Effective search space used: 298642 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory