Align Aldehyde dehydrogenase; Acetaldehyde dehydrogenase; EC 1.2.1.3 (characterized)
to candidate CA265_RS14635 CA265_RS14635 aldehyde dehydrogenase
Query= SwissProt::A1B4L2 (508 letters) >FitnessBrowser__Pedo557:CA265_RS14635 Length = 501 Score = 686 bits (1771), Expect = 0.0 Identities = 330/492 (67%), Positives = 397/492 (80%) Query: 17 FEERYDNFIGGEWVAPVSGRYFTNTTPITGAEIGQIARSEAGDIELALDAAHAAKEKWGA 76 F+ +YDN+IGG++VAPV G YF N +PI G + A S D+ELA+DAAH A + W Sbjct: 10 FKPQYDNYIGGKFVAPVKGAYFDNISPIDGKVFTKAAHSTKEDLELAVDAAHEAFKTWSK 69 Query: 77 TSPAERANIMLKIADRMERNLELLATAETWDNGKPIRETMAADLPLAIDHFRYFAGVLRA 136 TS ER+ I+ KIA RME NLE LA ET DNGK +RET+AADLPL +DHFRYFAGV+RA Sbjct: 70 TSSTERSIILNKIAQRMEDNLEYLAAVETIDNGKAVRETLAADLPLGVDHFRYFAGVIRA 129 Query: 137 QEGSISQIDDDTVAYHFHEPLGVVGQIIPWNFPLLMACWKLAPAIAAGNCVVLKPAEQTP 196 +EGS+S++D +TV+ HEP+GVV QIIPWNFPLLM WKLAPA+AAGNCVVLKPAE TP Sbjct: 130 EEGSLSELDQNTVSLIVHEPIGVVAQIIPWNFPLLMGIWKLAPALAAGNCVVLKPAESTP 189 Query: 197 AGIMVWANLIGDLLPPGVLNIVNGFGLEAGKPLASSNRIAKIAFTGETTTGRLIMQYASE 256 IMV LIGDLLPPGV+N+VNGFG E G+ L ++ +++K AFTG T TGRL+MQYA+E Sbjct: 190 VSIMVLMELIGDLLPPGVVNVVNGFGSELGRALVTNPKVSKAAFTGSTPTGRLVMQYATE 249 Query: 257 NLIPVTLELGGKSPNIFFADVAREDDDFFDKALEGFTMFALNQGEVCTCPSRVLIQESIY 316 N+IPVTLELGGKSPNIFF+ V EDD F DKA+EG MFALNQGE+CTCPSR+LIQE IY Sbjct: 250 NIIPVTLELGGKSPNIFFSSVMAEDDAFLDKAVEGAVMFALNQGEICTCPSRLLIQEDIY 309 Query: 317 DKFMERAVQRVQAIKQGDPRESDTMIGAQASSEQKEKILSYLDIGKKEGAEVLTGGKAAD 376 +KF+ + ++R +AIK G P + M+GAQAS Q EKI +Y+ +GK+EGAEVLTGG+ + Sbjct: 310 EKFIAKVIERTKAIKIGSPLDRTVMMGAQASKIQFEKIAAYIKLGKEEGAEVLTGGEINE 369 Query: 377 LGGELSGGYYIEPTIFRGNNKMRIFQEEIFGPVVSVTTFKDQAEALEIANDTLYGLGAGV 436 L GEL GGYYI+PTIF+G+NKMRIFQEEIFGPV++VTTFK EA+EIANDTLYGLGAGV Sbjct: 370 LPGELGGGYYIKPTIFKGHNKMRIFQEEIFGPVLAVTTFKTVEEAIEIANDTLYGLGAGV 429 Query: 437 WSRDANTCYRMGRGIKAGRVWTNCYHAYPAHAAFGGYKQSGIGRETHKMMLDHYQQTKNM 496 W+RDA+ Y++ R I+AGRVW N YHAYPA A FGGYKQSG+GRE HKMML HY+QTKNM Sbjct: 430 WTRDAHELYQVPRAIQAGRVWVNQYHAYPAGAPFGGYKQSGVGRENHKMMLGHYRQTKNM 489 Query: 497 LVSYSPKKLGFF 508 L+SY KLGFF Sbjct: 490 LISYDKNKLGFF 501 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 809 Number of extensions: 24 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 501 Length adjustment: 34 Effective length of query: 474 Effective length of database: 467 Effective search space: 221358 Effective search space used: 221358 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory