Align Malonate-semialdehyde dehydrogenase 1; MSA dehydrogenase 1; EC 1.2.1.-; Methylmalonate-semialdehyde dehydrogenase 1; MMSA dehydrogenase 1; MSDH 1; EC 1.2.1.27 (uncharacterized)
to candidate CA265_RS19780 CA265_RS19780 aldehyde dehydrogenase family protein
Query= curated2:Q5L025 (488 letters) >FitnessBrowser__Pedo557:CA265_RS19780 Length = 513 Score = 202 bits (513), Expect = 3e-56 Identities = 148/482 (30%), Positives = 234/482 (48%), Gaps = 17/482 (3%) Query: 16 GGQWVASSGTETLEVPNPATGEVLARVPISTKEDVDQAVQAAKKAFATWKDVPVPKRARI 75 G W TLE +P G+++A I+T +D D V A++AF W+ VP PKR I Sbjct: 24 GSNWGGELNVNTLESFSPVDGKLIASAKIATADDYDAVVLKAQEAFTAWRSVPAPKRGEI 83 Query: 76 MFSFHHLLNQHHEELAELVVQENGKAYKEAYGEIQRGIECVEFAAGAPTLLMGESLSNIA 135 + F L ++ + L LV E GK+ +E +GE+Q I+ +FA G L G L+ + Sbjct: 84 VRQFGDALRENKDALGTLVSYEMGKSLQEGFGEVQEMIDICDFAVGLSRQLYG--LTMHS 141 Query: 136 EEIDSEMFR--YPLGVVAGITPFNFPMMVPLWMFPLAIVCGNTFVLKPSERTPILA---- 189 E M+ +PLG+V I+ FNFP+ V W LA+VCGN + KPSE+TP+ A Sbjct: 142 ERPSHRMYEQWHPLGIVGIISAFNFPVAVWSWNTALALVCGNVCIWKPSEKTPLTAIACQ 201 Query: 190 NKLAELFTEAGAPPGVLNVVHGAHEVVNALIDHEDIRAISFVGSQPVAKYVYERTAAQ-G 248 + +A++F + GV N++ G EV + + I IS GS + K V A+ G Sbjct: 202 HIIAKVFKDNDIAEGVCNLILGDREVGERMTNDGRIPLISATGSTRMGKAVGAAVGARLG 261 Query: 249 KRVQALSGAKNHHIVMPDADVETAVQHVISSAFGSAGQRCMACSAVVI-VGENETFVRRL 307 K + L G N I+ AD++ ++ + A G+AGQRC + ++I + F +L Sbjct: 262 KSLLEL-GGNNAIIISEHADLDMSLIGAVFGAVGTAGQRCTSTRRLIIHESVYDAFTAKL 320 Query: 308 KQKADELIIGNGMDPEVLLTPVIRQSHREKVLGYIQK-GIEEGAVLLRDGRKEMDDRPEG 366 + +L IG+ +D + P+I L I K E G ++ G D G Sbjct: 321 VKAYGQLRIGDPLDQNNHVGPLIDTDAVAAYLDSIAKCKAEGGNFVVEGGVLSGDAYTSG 380 Query: 367 NFLGPTIFDYVTPDMTIAKEEIFAPVLSLLRANDLDEALSYIRKSRYGNGATIYTKDAKA 426 ++ P I + V D I + E FAP+L L++ LDEA++ G + I T + + Sbjct: 381 CYVKPCIAE-VQNDFKIVQHETFAPILYLIKYKTLDEAIALQNGVPQGLSSAIMTLNLRE 439 Query: 427 VRKF--REEADAGMLGINVGVPATMAFFPFSGWKDSFYGDLHVNGKDGVNFYTRKKMITS 484 +F + +D G+ +N+G F G K++ G +G D Y R++ T Sbjct: 440 AEQFLSAKGSDCGIANVNIGTSGAEIGGAFGGEKET--GGGRESGSDAWRAYMRRQTNTI 497 Query: 485 RF 486 + Sbjct: 498 NY 499 Lambda K H 0.319 0.136 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 549 Number of extensions: 31 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 513 Length adjustment: 34 Effective length of query: 454 Effective length of database: 479 Effective search space: 217466 Effective search space used: 217466 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory