Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate GFF2135 PGA1_c21670 betaine aldehyde dehydrogenase BetB
Query= SwissProt::P42236 (488 letters) >FitnessBrowser__Phaeo:GFF2135 Length = 485 Score = 325 bits (834), Expect = 2e-93 Identities = 189/478 (39%), Positives = 285/478 (59%), Gaps = 13/478 (2%) Query: 12 NFINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEAKTAWRKLTGAE 71 +FINGE+V+ +G + V A + + V +T VE+A++ A A+ AW ++TG E Sbjct: 11 HFINGEYVEDTAGTPIPVIYAA-TGEQIATVHAATPAIVEQALSTAKAAQKAWARMTGTE 69 Query: 72 RGQYLYKTADIMEQRLEEIAACATREMGKTLPEAK-GETARGIAILRYYAGEGMRKTGDV 130 RG+ L + ADIM +R +++ T + GK L E + G L Y+ G TG+ Sbjct: 70 RGRILRRAADIMRERNHDLSVLETYDTGKPLQETLVADATSGADALEYFGGLAASLTGEH 129 Query: 131 IPSTDKDALMFTTRVPLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATETAVTCA 190 IP + ++T R LG+ I WN+P I WK APAL GN++V KP+ T + Sbjct: 130 IPLGED--WVYTKREALGLCVGIGAWNYPTQIACWKGAPALACGNSMVFKPSETTPLCAL 187 Query: 191 KIIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGKIIGQAALARGA 250 K+ EAG PAGV N+V G G V G L V+ V+ TGS GK + AA A G Sbjct: 188 KVAEILIEAGAPAGVFNVVQGMGEV-GGALVTDPRVDKVSLTGSVPTGKKV-YAAAAEGM 245 Query: 251 KY-QLEMGGKNPVIVADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQSGIYERFKEKL 309 K+ +E+GGK+P+I+ DDAD++ A I G F S+GQ C+ +RV VQ GI E+F +L Sbjct: 246 KHVTMELGGKSPLIIFDDADIDNAVGGAINGNFYSSGQVCSNGTRVFVQKGIKEKFLARL 305 Query: 310 LQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGEKLENGKYQNG 369 +RT + +GD + E GP+ ++NQ++ L YIEKGK+EGA L+ GG + + +G Sbjct: 306 AERTGNAILGDPMDEATSFGPMVTENQMNIVLGYIEKGKEEGARLICGGRRAD----MDG 361 Query: 370 YYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGLSASIFTENIGR 429 Y+++P +F +VT +MTIA+EEIFGPV++++ D+ EE + AND +FGLSA +FT++ R Sbjct: 362 YFIEPTVFADVTDDMTIAREEIFGPVMSVLDFDTEEEVVARANDTEFGLSAGVFTKDFTR 421 Query: 430 MLSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHSREQGEAAKDFFTAIKTVFVK 487 I ++AG IN+ + ++APFGG+K +S RE + A F+ +K+V+V+ Sbjct: 422 AHRVIGNLEAGSCFINSYN-DAPVEAPFGGVK-ASGVGRENSKEAIKHFSQVKSVYVR 477 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 562 Number of extensions: 28 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 485 Length adjustment: 34 Effective length of query: 454 Effective length of database: 451 Effective search space: 204754 Effective search space used: 204754 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory