Align delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial; EC 1.5.1.12 (characterized)
to candidate GFF3174 PGA1_c32250 gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase PuuC
Query= CharProtDB::CH_122352 (572 letters) >FitnessBrowser__Phaeo:GFF3174 Length = 494 Score = 159 bits (402), Expect = 2e-43 Identities = 158/500 (31%), Positives = 240/500 (48%), Gaps = 46/500 (9%) Query: 71 VIAGKEVKSSSSLTQS--NPASHGPVATYSNATAKDVQAAIESALEA--RKSWASTPFAD 126 +I G++V +S T +P + + T +D++ AI SA A + WA P A Sbjct: 20 LIDGQQVAASDGATMDVLSPIDGRLLTQIARGTVRDMERAIASARAAFEDRRWAGQPPAA 79 Query: 127 RASVFLKAADLISTKYRYDVMALTMHGQGKN------AWQAEIDSAAELCDFFRFGVKYA 180 R V +K A+LI D + L + G N A +AE SAA R+ + Sbjct: 80 RKKVLMKWAELIEA----DALNLAVLGVRDNGTEITMALKAEPGSAAAT---IRYYAEAL 132 Query: 181 EDLYAQQPVHHAPGVWNRVEYRPLEGFVYAISPFNFTAIGGNLAGAPAL-MGNVVVWKPS 239 + +Y + + V V P+ G V AI P+NF + G APAL MGN VV KPS Sbjct: 133 DKIYGEI-APTSSDVLGMVHKEPV-GVVGAIIPWNFPMMIGAWKLAPALAMGNSVVLKPS 190 Query: 240 PSAIASNWLVHQILLEAGLPKNVIQFVPGEAEEVTKTVLDHPDFAALHFTGSTNVFRNLY 299 +A S + ++ LEAGLP V+ V GE V + + D L FTGS Sbjct: 191 ETASLSLMRMVELALEAGLPPGVLNAVTGEGAVVGEALGLSMDVDVLVFTGS-------- 242 Query: 300 GQISTRVAAGKYRS-YPRIVGETGGKNFHLIHKSA-DIRNAAVQTVRGAFEYQGQKCSAT 357 GQ R+ RS R+ E GGK+ +++ A D+ +AA T G F GQ C A Sbjct: 243 GQTGRRLMEYAARSNLKRVYLELGGKSPNIVFADAPDLADAAKVTAAGIFRNSGQVCVAG 302 Query: 358 SRVYVASSIADSFLEQVASEAKSLKVGPPSDFTNFCGPVIHEASFTKLAKVIDEAKNDPE 417 SR+ V +SI D+F+E+VA A+ ++VG P G + EA + + + A+ + Sbjct: 303 SRLLVEASIHDAFVEEVAKAAQMMRVGDPLRLDTQIGAINSEAQLARNLQFVARAEVEGG 362 Query: 418 LELLAGGS--YDSSKGWYIQPTVYRTTNPDHPLLTRELFGPILVVYAYPDATEADFARIA 475 +++ GG + G Y+ PT+ PD L E+FGP+L V P T+A+ RIA Sbjct: 363 -QIITGGQRLLSETGGSYMAPTIVTGVTPDATLAQEEVFGPVLAV--TPFETDAEALRIA 419 Query: 476 QKIDATGEYGLTGSVFAQDREALAVANDVLRNA-AGNFYINCKSTGAVVGQQPFGGARAS 534 +AT YGL G+V+ L A+ +++ G ++N + G G P GG S Sbjct: 420 ---NAT-VYGLAGAVWT---SGLTRAHRMVQGVRTGVMHVN--TYGGADGTVPLGGVGQS 470 Query: 535 GTNDKAGSGNLLSRFVSLRS 554 G N S + + ++++L++ Sbjct: 471 G-NGADKSLHAIDKYINLKT 489 Lambda K H 0.316 0.130 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 577 Number of extensions: 27 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 572 Length of database: 494 Length adjustment: 35 Effective length of query: 537 Effective length of database: 459 Effective search space: 246483 Effective search space used: 246483 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory