GapMind for catabolism of small carbon sources

 

Aligments for a candidate for speB in Phaeobacter inhibens BS107

Align agmatinase (EC 3.5.3.11) (characterized)
to candidate GFF1959 PGA1_c19920 agmatinase SpeB

Query= BRENDA::W5PHZ9
         (361 letters)



>FitnessBrowser__Phaeo:GFF1959
          Length = 315

 Score =  351 bits (900), Expect = e-101
 Identities = 169/309 (54%), Positives = 223/309 (72%)

Query: 51  NQPPSSEFVARSVGICSMMRLPMQATPEGLDAALVGVPLDIGTSNRPGARFGPRRIREES 110
           NQP S   +AR  G  + MRLP   + +GLD A++GVP+DIGTS R G RFGP++IR ES
Sbjct: 5   NQPISGNDLARFSGPNTFMRLPQATSLDGLDVAILGVPMDIGTSWRSGTRFGPKQIRAES 64

Query: 111 VMLRTANPSTGAVPFQFLKVADLGDVNVNLYNLQDSCRLIRADYQKIVAAGCVPLTLGGD 170
            M+R  N ++GA PF  L + D+GD+ +N ++L DS R+I+  Y  I+A+   P+ +GGD
Sbjct: 65  AMIRPYNMTSGAAPFDSLNIGDIGDLAINTFSLPDSLRIIQESYSAILASDVTPVAMGGD 124

Query: 171 HTITYPILQAIAEKHGPVGLVHVDAHMDTADKALGEKLYHGTPFRRCVDEGLLDCKRVVQ 230
           H+IT PIL+A+AEK+GPV LVHVDAH D  D   GE+  HGT FRR  +EGL+   +  Q
Sbjct: 125 HSITLPILRAVAEKYGPVALVHVDAHADVNDDMFGERETHGTVFRRAYEEGLIVADKTYQ 184

Query: 231 IGIRGSSTTLDTYRYSRSQGFRVVLAEDCWLKSLVPLMGEVRQQMGGRPIYISFDIDGLD 290
           IG+RG+    D ++ ++  GF+   A + W +SL  +  E+R+ +G RP+Y+S+DID LD
Sbjct: 185 IGLRGTGYGADDFKEAQRWGFQHFPASELWNRSLHGMGAEIRRDIGNRPVYVSYDIDSLD 244

Query: 291 PAYAPGTGTPEIAGLTPSQALEIIRGCQGLNVVGCDLVEVSPPYDPSGNTALVAANLLFE 350
           PAYAPGTGTPEI GLT  QALE+IR  +GLN+VGCD+VEVSPPYD SGNTAL AANLL+E
Sbjct: 245 PAYAPGTGTPEIGGLTTPQALELIRALRGLNIVGCDMVEVSPPYDTSGNTALTAANLLYE 304

Query: 351 MLCVLPKVT 359
           +LCVLP VT
Sbjct: 305 LLCVLPGVT 313


Lambda     K      H
   0.321    0.139    0.426 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 372
Number of extensions: 14
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 361
Length of database: 315
Length adjustment: 28
Effective length of query: 333
Effective length of database: 287
Effective search space:    95571
Effective search space used:    95571
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 49 (23.5 bits)

Align candidate GFF1959 PGA1_c19920 (agmatinase SpeB)
to HMM TIGR01230 (speB: agmatinase (EC 3.5.3.11))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR01230.hmm
# target sequence database:        /tmp/gapView.3301.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR01230  [M=275]
Accession:   TIGR01230
Description: agmatinase: agmatinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                          Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                          -----------
    1.5e-69  220.6   0.0    1.9e-69  220.3   0.0    1.0  1  lcl|FitnessBrowser__Phaeo:GFF1959  PGA1_c19920 agmatinase SpeB


Domain annotation for each sequence (and alignments):
>> lcl|FitnessBrowser__Phaeo:GFF1959  PGA1_c19920 agmatinase SpeB
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  220.3   0.0   1.9e-69   1.9e-69      13     274 ..      34     307 ..      22     308 .. 0.89

  Alignments for each domain:
  == domain 1  score: 220.3 bits;  conditional E-value: 1.9e-69
                          TIGR01230  13 AevvivgiPydattsyrpGsrhgpeaireastnLeayseeld.rdlallkvvDagdlplaaGdaremvekieevve 87 
                                         +v i+g+P+d  ts+r G+r+gp++ir  s  +  y+ + +   ++ l++ D gdl + + +  +++  i+e  +
  lcl|FitnessBrowser__Phaeo:GFF1959  34 LDVAILGVPMDIGTSWRSGTRFGPKQIRAESAMIRPYNMTSGaAPFDSLNIGDIGDLAINTFSLPDSLRIIQESYS 109
                                        5889*********************************99988678**************99999************ PP

                          TIGR01230  88 elleegkfvvaiGGeHsitlpvirAvkkkfeklavvqfDAHtDlrdefegeklshacvmrrvlelg....lnvlqi 159
                                         +l+    +va+GG+Hsitlp++rAv++k++++a+v++DAH+D+ d+  ge+ +h +v rr++e g     +++qi
  lcl|FitnessBrowser__Phaeo:GFF1959 110 AILASDVTPVAMGGDHSITLPILRAVAEKYGPVALVHVDAHADVNDDMFGERETHGTVFRRAYEEGlivaDKTYQI 185
                                        ****************************************************************987676799*** PP

                          TIGR01230 160 giRsg......ikeead..larennikvlkreledeiaevlakvldkpvyvtiDiDvlDPafaPGvgtpepgGlts 227
                                        g+R        +ke ++  + +  + ++ +r+l+   ae    + ++pvyv+ DiD lDPa+aPG+gtpe+gGlt+
  lcl|FitnessBrowser__Phaeo:GFF1959 186 GLRGTgygaddFKEAQRwgFQHFPASELWNRSLHGMGAEIRRDIGNRPVYVSYDIDSLDPAYAPGTGTPEIGGLTT 261
                                        ***7622111133333200333334444456777779999999********************************* PP

                          TIGR01230 228 kellklfvlaekekkvvGlDvvEvaPvydssevtaltaaklalelll 274
                                         ++l+ + +a    ++vG+D+vEv+P yd+s  taltaa+l +ell 
  lcl|FitnessBrowser__Phaeo:GFF1959 262 PQALE-LIRALRGLNIVGCDMVEVSPPYDTSGNTALTAANLLYELLC 307
                                        *****.999***********************************996 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (275 nodes)
Target sequences:                          1  (315 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.00u 0.01s 00:00:00.01 Elapsed: 00:00:00.01
# Mc/sec: 6.92
//
[ok]

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory