Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate GFF3354 PGA1_c34070 long-chain-fatty-acid- CoA ligase IcfB
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >lcl|FitnessBrowser__Phaeo:GFF3354 PGA1_c34070 long-chain-fatty-acid- CoA ligase IcfB Length = 500 Score = 209 bits (532), Expect = 2e-58 Identities = 161/522 (30%), Positives = 241/522 (46%), Gaps = 78/522 (14%) Query: 59 YAQLQTEAHRLASALLGMGLTPGDRVGIWSHNNAEWVLMQLATAQVGLVLVNINPAYRTA 118 Y +L A R+A+AL+ G+ PGDRV + + + L T G + + +NPAY A Sbjct: 34 YGELFAGAERMAAALVSRGVAPGDRVAAQVDKSLAAIQLYLGTVMAGAIFLPLNPAYTEA 93 Query: 119 EVEYALNKVGCKLLV-SMARFKTSDYLGMLRELAPEWQGQQPGHLQAAKLPQLKTVVWID 177 EV Y + ++ V + R ++ LR +A E TV+ +D Sbjct: 94 EVAYFIGDATPRVFVCNPVRHES------LRAVAGE-----------------ATVLTLD 130 Query: 178 DEAGQGADEPGLLRFTELIARGNAADPRLAQVAAGLQATDPIN--------IQFTSGTTG 229 E GQG+ LA +AAG +PI I +TSGTTG Sbjct: 131 GE-GQGS---------------------LADLAAGHAGFEPIERKPSDLAAILYTSGTTG 168 Query: 230 FPKGATLTHRNILNNGFFIGECMKLTPADRLCIPVPLYHCFGMVLGNLACFTHGATIVYP 289 KGA L+H N+ +N + + + T D L +P++H G+ + GA +V Sbjct: 169 RSKGAMLSHENLYSNSLTLRDYWQFTAEDVLIHALPIFHTHGLFVATNVALLAGAQVVL- 227 Query: 290 NDGFDPLTVLQTVQDERCTGLHGVPTMFIAELDHPRFAEFNLSTLRTGIMAGSPCPTEVM 349 GFD +L + + T L GVPT + L R + +R I +P E Sbjct: 228 LPGFDAEAILAAMPN--ATALMGVPTFYTRLLVDARLTPDLAANMRLFISGSAPLLVETH 285 Query: 350 KRVVEQMNLREITIAYGMTETSPVSCQSSTDTPLS--KRVSTVGQVQPHLEVKIVDPDTG 407 ++ E I YGMTET+ ST P + TVG P +E ++ + Sbjct: 286 EQ-WEARTGHRILERYGMTETN-----MSTSNPYDGVRVAGTVGPPLPGVEARVTLDN-- 337 Query: 408 AVVPIGQRGEFCTKGYSVMHGYWGDEAKTREAIDEGGWMHTGDLATMDAEGYVNIVGRIK 467 A +P+G+ G +G +V GYW KT E + GW TGDLA +D+ GYV IVGR K Sbjct: 338 AEIPLGEIGVLEVRGPNVFQGYWQMPEKTAEELRPDGWFITGDLAKIDSNGYVTIVGREK 397 Query: 468 DMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPDQKYGEELCAWIIAKPGTQPTED--- 524 D+VI GG N+YP+E+E + P V + V+GVP +GE + A ++ PTE+ Sbjct: 398 DLVISGGFNVYPKEVETLIDDLPGVLESAVIGVPHPDFGEAVVAVVV------PTEEGTD 451 Query: 525 --DIRAFCKGQIAHYKVPRYIRFVTSFPMTVTGKIQKFKIRD 564 I+A +A +K P++I + P GK+QK +R+ Sbjct: 452 AASIQAALSEHLAKFKQPKHIALMDELPRNTMGKVQKKALRE 493 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 615 Number of extensions: 24 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 500 Length adjustment: 35 Effective length of query: 543 Effective length of database: 465 Effective search space: 252495 Effective search space used: 252495 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory