Align Acetyl-coenzyme A synthetase; AcCoA synthetase; Acs; Acetate--CoA ligase; Acyl-activating enzyme; EC 6.2.1.1 (characterized)
to candidate GFF1013 PGA1_c10300 acetyl-coenzyme A synthetase AcsA
Query= SwissProt::P39062 (572 letters) >FitnessBrowser__Phaeo:GFF1013 Length = 516 Score = 233 bits (593), Expect = 2e-65 Identities = 166/529 (31%), Positives = 264/529 (49%), Gaps = 45/529 (8%) Query: 36 WHETGKLNAAYEAIDRHAESFRKNKVALYYKDAKRDEKYTFKEMKEESNRAGNVLRRYGN 95 W LN A +A+D E + A+RD +Y E+++ + L + Sbjct: 19 WQFPSCLNMAAQALDHPDEQLALIDLTT---GARRDIRYG--ELRQMVDAVARDLMQ--R 71 Query: 96 VEKGDRVFIFMPRSPELYFIMLGAIKIGAIAGPLFEAFMEGAVKDRLENSEAKVVVTTPE 155 V+ GDRV + + +S + L KIGAI+ PLF+ F A+ R+ ++ ++V+T Sbjct: 72 VQPGDRVGVLLSQSVDCAVAHLAIWKIGAISVPLFKLFQHDALASRIGDAGLELVLTDGG 131 Query: 156 LLERIPVDKLPHLQHVFVVGGEAESGTNIINYDEAAKQESTRLDIEWMDKKDGFLLHYTS 215 ++ P L + +S +++ Y E + +L YTS Sbjct: 132 GTAQLGSLAQPLLVADILSASTGQSD-HLLPYAETTPETPA-------------VLIYTS 177 Query: 216 GSTGTPKGVLHVHEAMIQQYQTGKWVLDLKEE--DIYWCTADPGWVTGTVYGIFAPWLNG 273 G+TG+ KG LH H + D + D W AD W+ G ++ + P L Sbjct: 178 GTTGSAKGALHGHRVLSGHLPGVAISHDHLGQPGDCLWTPADWAWIGG-LFDVLMPGLAL 236 Query: 274 ATNVIVG--GRFSPESWYGTIEQLGVNVWYSAPTAFRMLMGAGDEMAAKYDLTSLRHVLS 331 V+ +F+PE+ I Q V + PTA R+L AG L LR V S Sbjct: 237 GVPVVAARLDKFTPEACAEIIRQGDVRNVFFPPTALRLLKAAGQ------GLDGLRSVAS 290 Query: 332 VGEPLNPEVIRWGHKVFNKRIHDTWWMTE---TGSQLICNYPCMDIKPGSMGKPIPGVEA 388 GEPL E++ WG + I++ + TE T S + ++P ++PG +G+P+PG Sbjct: 291 GGEPLGAEMLAWGQRHLGVTINEFYGQTECNMTVSSCVADFP---VRPGCIGRPVPGCTV 347 Query: 389 AIVDNQGNELPPYRMGNLAIKKGWPSMMHTIWNNPEKYESYFMPGGWYVSGDSAYMDEEG 448 ++D+ G P G++A+++G SMM WN P+ F W ++GD + + Sbjct: 348 EVLDDTGT--PTKDEGDVAVRRGAASMMLEYWNRPDATAEKFH-ADWLITGDRGIWEGD- 403 Query: 449 YFWFQGRVDDVIMTSGERVGPFEVESKLVEHPAIAEAGVIGKPDPVRGEIIKAFIALREG 508 Y F GR DDVI ++G R+GP E+E L+ HPA+A GV+GKPD +R EI+KA++ L+ G Sbjct: 404 YLRFVGREDDVITSAGYRIGPAEIEDCLMTHPAVATVGVVGKPDELRTEIVKAYVVLKPG 463 Query: 509 FEPSDKLKEEIRLFVKQGLAAHAAPREIEFKDKLPKTRSGKIMRRVLKA 557 PS+ +++ +VK LA ++ PRE+EF D LP T +GK++R+ LKA Sbjct: 464 HSPSE---SDLQDYVKSRLAKYSYPREVEFLDALPMTVTGKVIRKELKA 509 Lambda K H 0.318 0.136 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 772 Number of extensions: 46 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 572 Length of database: 516 Length adjustment: 35 Effective length of query: 537 Effective length of database: 481 Effective search space: 258297 Effective search space used: 258297 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory