Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate GFF385 PGA1_c03960 ribose import ATP-binding protein RbsA
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__Phaeo:GFF385 Length = 509 Score = 278 bits (712), Expect = 3e-79 Identities = 188/519 (36%), Positives = 280/519 (53%), Gaps = 22/519 (4%) Query: 11 APLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGE 70 AP + L+ I K F V+A + + + G +H ++GENGAGKSTLM IL G Y AD G E Sbjct: 3 APAIELKGISKAFGPVQANKDISIRVAPGTIHGIIGENGAGKSTLMSILYGFYKADKG-E 61 Query: 71 CHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVARGDMVRA 130 I G+R +I Q+A G+ +++Q L N +V ENI LG G + + + +A Sbjct: 62 VWIHGKRTEIPDSQAAISAGIGMVFQHFKLVENFTVLENIILGA---EDGGLLKPSLSKA 118 Query: 131 CAPTLARLGADFS----PAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHET 186 +L L A++ P A + + + +Q VEI +A++ +A IL++DEPT L+ E Sbjct: 119 -RKSLKDLAAEYELNVDPDARIDEIGVGMQQRVEILKALYRQADILILDEPTGVLTPAEA 177 Query: 187 DRLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMM 246 D+LF ++ +LR EG I+ I+H++ EI E D V+V+R G T+ A S L ++M Sbjct: 178 DQLFRILDRLRAEGKTIILITHKLREIMEYTDTVSVMRRGEMTATVKTAETSPEHLAELM 237 Query: 247 VGRDLSGFYTK---THGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGR 303 VGR + K T G+ + LSV D A RVK +RAGE+LG+AG+ G G+ Sbjct: 238 VGRKVLLRVDKVPATPGKPILEIENLSVVDEAGVARVKNIDLTVRAGEILGIAGVAGNGQ 297 Query: 304 TELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGP--RQAIDAGIAYLTEDRKLQGLF 361 +EL V G +G +R+ +G + L G R A +A++ EDR+ +GL Sbjct: 298 SELME-VLGGMREGQGSIRL-----NGAPLPLSGAGSDARARRAAHVAHVPEDRQREGLI 351 Query: 362 LDQSVHENINLIVAARDALGLGRLNRTAARRRTTEA-IDTLGIRVAHAQVNVGALSGGNQ 420 +D EN+ G L AA R TEA + +R + SGGNQ Sbjct: 352 MDFHAWENVAFGYHHAPEYQRGLLMNNAALRADTEAKMAKFDVRPPDPWLAAKNFSGGNQ 411 Query: 421 QKVMLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGL 480 QK++++R +E P +L++ +PTRGVDIGA I++ I L G AIL++S EL E++ L Sbjct: 412 QKIVVAREIERNPELLLIGQPTRGVDIGAIEFIHKQIVELRDQGKAILLVSVELEEILSL 471 Query: 481 CDRVLVMREGTLAGEVRPAGSAAETQERIIALATGAAAA 519 DRV VM +G + GE RPA E + ++ AA Sbjct: 472 ADRVAVMFDGMIMGE-RPADQTDEKELGLLMAGVAGEAA 509 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 625 Number of extensions: 34 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 509 Length adjustment: 35 Effective length of query: 505 Effective length of database: 474 Effective search space: 239370 Effective search space used: 239370 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory