Align methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate GFF2128 PGA1_c21600 propionyl-CoA carboxylase beta chain
Query= BRENDA::Q9LDD8 (587 letters) >FitnessBrowser__Phaeo:GFF2128 Length = 510 Score = 257 bits (657), Expect = 7e-73 Identities = 164/522 (31%), Positives = 262/522 (50%), Gaps = 32/522 (6%) Query: 68 MEGILSELRSHIKKVLAGGGEEAVKRNRSRNKLLPRERIDRLLDPGSSFLELSQLAGHEL 127 M+ ILSEL GGG++ + R KL RERI+ LLD GS F E H Sbjct: 1 MKDILSELEDRRNAARLGGGQKRIDAQHGRGKLTARERIELLLDEGS-FEEFDMFVAHRC 59 Query: 128 ----YEEPLPSG-GIITGIGPIHGRICMFMANDPTVKGGTYYPITIKKHLRAQEIAARCR 182 E P+G G++TG G I+GR+ + D TV GG+ +K + ++A + Sbjct: 60 TDFGMENQRPAGDGVVTGWGTINGRMVYVFSQDFTVFGGSLSETHAQKICKIMDMAVQNG 119 Query: 183 LPCIYLVDSGGAYLPKQAEVFPDKENFGRVFYNESVMSSDGIPQIAIVLGSCTAGGAYIP 242 P I + DSGGA + E + VF ++M+S +PQI++++G C G Y P Sbjct: 120 APVIGINDSGGARIQ---EGVASLAGYAEVF-QRNIMASGVVPQISVIMGPCAGGAVYSP 175 Query: 243 AMADESVMVKGNGTIFLAGPPLVKAATGEEVSAEDLGGATVHCTVSGVSDYFAQDELHGL 302 AM D MVK +F+ GP +VK T E V+AE+LGGA+ H S V+D ++++ L Sbjct: 176 AMTDFIFMVKDTSYMFVTGPDVVKTVTNEVVTAEELGGASTHTKKSSVADGAFENDVEAL 235 Query: 303 AIGRNIVKNLHMAAKQGMEGTFGSKNLVYKEPLYDINELRSIAPVDHKQQFDVRSIIARI 362 A R +V L + ++ + EP L ++ P + +D++ +I ++ Sbjct: 236 AEVRRLVDFLPLNNREK-----PPVRPFFDEPGRVETSLDTLIPANPNTPYDMKELIHKV 290 Query: 363 VDGSEFDEFKKQYGTTLVTGFARIYGQTVGIIGNN-----GILFNESALKGAHFIELCSQ 417 D +F E ++ + ++TGF R+ GQTVG++ N G L +S+ K A F+ C Sbjct: 291 ADEGDFYEIQEDFAKNIITGFIRLEGQTVGVVANQPTVLAGCLDIDSSRKAARFVRFCDC 350 Query: 418 RKIPLVFLQNITGFMVGSRAEANGIAKAGAKMVMAVSCAKVPKITIITGASFGAGNYAMC 477 +IP++ L ++ GF+ G+ E G+ K GAK++ A A VPK+T+IT ++G M Sbjct: 351 FEIPILTLVDVPGFLPGTSQEYGGVIKHGAKLLFAYGEATVPKVTVITRKAYGGAYDVMA 410 Query: 478 GRAYSPDFMFIWPNARIGIMGGAQAAGVLTQIERATKKRQGIKWTEEEEEAFKKKTVDAY 537 + DF + WP A I +MG A ++ + + A + + + T D Sbjct: 411 SKHLRGDFNYAWPTAEIAVMGAKGATEIIHRADLA------------DADKIAEHTKDYE 458 Query: 538 EREANPYYSTARLWDDGVIDPCDTRKVLGLCLSAALNRPLED 579 ER ANP+ + R + D VI P TRK + ++ + L++ Sbjct: 459 ERFANPFVAAERGFIDEVIMPQSTRKRVSRAFASLRGKQLKN 500 Lambda K H 0.320 0.138 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 702 Number of extensions: 32 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 587 Length of database: 510 Length adjustment: 36 Effective length of query: 551 Effective length of database: 474 Effective search space: 261174 Effective search space used: 261174 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory