Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate GFF3742 PGA1_262p01460 aldehyde dehydrogenase
Query= BRENDA::A0A081YAY7 (498 letters) >lcl|FitnessBrowser__Phaeo:GFF3742 PGA1_262p01460 aldehyde dehydrogenase Length = 497 Score = 226 bits (576), Expect = 1e-63 Identities = 147/472 (31%), Positives = 235/472 (49%), Gaps = 5/472 (1%) Query: 5 KHLIGGELIADTGRTADVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNTPPAKR 64 K+LI GE +A + + V A + ++ +D A+ A W ++ Sbjct: 21 KNLIAGEWLAGESEVENRNPSDLSDLVGIFAQASADQLEATLDQAQVAQREWAAYGLERK 80 Query: 65 AQVLFRFKQLLEANEERIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILKGEYSR 124 VL + A E + L+S E GK + + GE+ R + Y A GE + Sbjct: 81 QAVLNAIGNEMMARAEELGTLLSREEGKPLAEGKGEVYRAGQFFTYYAAECLRQIGENAD 140 Query: 125 NVGPNIDAWSDFQPIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPSSTLLI 184 +V P+I+ + +G VA I+P+NFP W A+ GN + KP+ P+S + + Sbjct: 141 SVRPDIEVDVRREAVGTVAIISPWNFPTATASWKIAPALCYGNAVVWKPANITPASAVAL 200 Query: 185 AELFHEAGLPKGVLNVVHGDKGAV-DALIEAPEVKALSFVGSTPIAEYIYSEGTKRGKRV 243 AE+ +PKG+ ++V G ++ L+E+P+V A+SF GS P+ + I S + +V Sbjct: 201 AEIIERQDIPKGLFSLVMGSGRSIGQRLVESPKVNAISFTGSVPVGKGIASAAIQNLTKV 260 Query: 244 QALGGAKNHAVLMPDADLDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQKLVP 303 Q G+KN +M DADLD AV+ +G A+G G++C A S V V I DA V+KLV Sbjct: 261 QMEMGSKNALAVMDDADLDLAVTLALGGAFGGTGQKCTASSRLV-VHAGIHDAFVEKLVT 319 Query: 304 QIKGLKIGAGTSCGLDMGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAGHENGFF 363 K +K+G G+ MGP+V+ ++ Y+D G +GAEL G+ ++ GF+ Sbjct: 320 GAKAMKVGHALEAGVQMGPVVSEQQLNENLAYVDLGKTEGAELACGGQRLEMP--HQGFY 377 Query: 364 LGGTLFDRVTPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTRDGEAAR 423 + +F T +M I +EE+F P+ +++V S +EA+ ++ND +G + I T+ A Sbjct: 378 MSPGVFLNTTNDMRINREEMFAPLTSVIKVGSYDEALSVVNDTNFGLTSGIVTQSLARAT 437 Query: 424 LFCDEIEVGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDGVRFYTKRK 475 F G+V VN+P + FGG S +G G FYT K Sbjct: 438 HFRRNARTGVVTVNLPTAGTDYHVPFGGRGDSSYGP-REQGKAAAEFYTTVK 488 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 579 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 497 Length adjustment: 34 Effective length of query: 464 Effective length of database: 463 Effective search space: 214832 Effective search space used: 214832 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory