Align phenylacetaldehyde dehydrogenase monomer (EC 1.2.1.39) (characterized)
to candidate GFF2074 PGA1_c21070 betaine aldehyde dehydrogenase BetB
Query= metacyc::MONOMER-15732 (497 letters) >lcl|FitnessBrowser__Phaeo:GFF2074 PGA1_c21070 betaine aldehyde dehydrogenase BetB Length = 488 Score = 325 bits (832), Expect = 3e-93 Identities = 187/483 (38%), Positives = 270/483 (55%), Gaps = 12/483 (2%) Query: 17 RKLKMRIGADWQDAASGRTLSFRNPATGEVLGEVPAADAEDVDRAVRAARQAFDDSPWSR 76 ++ + IG + D ++ R+PA+GEV +P A A DV+ AV AAR AF W+ Sbjct: 2 QQFQQYIGGVFSDGSA--RFESRDPASGEVWAMMPEARASDVEAAVAAARAAFHAPDWAG 59 Query: 77 LRPRERQNLLWRLADLMERDARQLAELECLNNGKSAAVAQVMDVQLAIDFLRYMAGWATK 136 + R LL+RLADL+ +A LA+LE + GK +A D+ RY AG A K Sbjct: 60 MTATGRGKLLYRLADLIAENAETLAQLETRDTGKIIRETSAQIAYVA-DYYRYYAGLADK 118 Query: 137 IEGSTVEASMPLMPNDQFHGFVRREAIGVVGAIVAWNFPLLLACWKLGPALATGCTIVLK 196 IEG+ + P M ++RRE +GVV A+V WN L LA K+GPALA GCT+VLK Sbjct: 119 IEGAHLPIDKPDM-----EVWLRREPLGVVAAVVPWNSQLFLAAVKIGPALAAGCTVVLK 173 Query: 197 PADETPLSVLKLAELVDEAGYPAGVFNVVTGTGLNAGAALSRHPGVDKLTFTGSTEVGKL 256 ++E P +L+ A + D+AG+P GV NV+TG G + GA L+ HPG+D + FTG + + Sbjct: 174 ASEEAPAPLLEFARIFDQAGFPRGVLNVITGFGADCGAVLTAHPGIDHIAFTGGPDTARH 233 Query: 257 IGKAAMDNMTRVTLELGGKSPTIVMPDANLQEAAAGAATAIFFNQGQVCCAGSRLYVHRK 316 + + + +N+ +LELGGKSP IV D ++ A +AIF GQ C AGSRL + + Sbjct: 234 VVRNSAENLASTSLELGGKSPFIVFEDVDIDSAVNAQVSAIFAATGQSCVAGSRLIISNQ 293 Query: 317 HFDNVVADIAGIANGMKLGNGLDPAVQMGPLISAKQQDRVTGYIELGRELGATVACGGEG 376 + + A +++G P ++GPL + Q R + GA + GG+ Sbjct: 294 IKAQFLHRLKEKAENIRIGAPELPETEVGPLCTDAQMRRAVELVAASLAAGARIVTGGQP 353 Query: 377 F-GPGYFVKPTVIVDVDQRHR--LVQEEIFGPVLVAMPFDDLDEVIGMANDNPYGLGASI 433 G G F PT I+D + ++EE FGPVL FD E + +AND +GL + + Sbjct: 354 LEGEGNFFPPT-ILDCSEAPEAPCLREEFFGPVLSVCGFDTEAEALALANDTAHGLASGV 412 Query: 434 WSNDLAAVHRMIPRIKSGSVWVNCHSALDPALPFGGYKMSGVGREVGAAAIEHYTELKSV 493 ++ DL HRMI I++G VWVN + A+ P PFGG +SG GRE G A YT +K+V Sbjct: 413 FTRDLTRAHRMIRGIRAGIVWVNTYRAVSPIAPFGGQGLSGHGREGGLQAALDYTRVKTV 472 Query: 494 LIK 496 ++ Sbjct: 473 WLR 475 Lambda K H 0.320 0.137 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 579 Number of extensions: 24 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 488 Length adjustment: 34 Effective length of query: 463 Effective length of database: 454 Effective search space: 210202 Effective search space used: 210202 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory