GapMind for catabolism of small carbon sources

 

Aligments for a candidate for acn in Phaeobacter inhibens BS107

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; Iron-responsive protein-like; IRP-like; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate GFF1856 PGA1_c18830 aconitate hydratase AcnA

Query= SwissProt::P70920
         (906 letters)



>lcl|FitnessBrowser__Phaeo:GFF1856 PGA1_c18830 aconitate hydratase
           AcnA
          Length = 895

 Score = 1095 bits (2831), Expect = 0.0
 Identities = 549/903 (60%), Positives = 690/903 (76%), Gaps = 19/903 (2%)

Query: 5   DSFKCKKTLKVGAKTYVYYSLPTAEKNGLKGISKLPYSMKVLLENLLRNEDGR-SVKKAD 63
           D+ K ++ L  G K+  YYS+P A + GL   +KLP ++KV+LEN+LR EDG  SV   D
Sbjct: 8   DNAKTRRKLSAGGKSISYYSIPAATEAGLGDFAKLPAALKVVLENMLRFEDGGFSVSTDD 67

Query: 64  IVAVSKWLRKKSLE-HEIAFRPARVLMQDFTGVPAVVDLAAMRNAMQKLGGDAEKINPLV 122
           I A ++W         EIA+RPARVLMQDFTGVPAVVDLAAMR+ ++ LGGDA+KINPL 
Sbjct: 68  IKAFAEWGANGGKNPREIAYRPARVLMQDFTGVPAVVDLAAMRDGIKALGGDAQKINPLN 127

Query: 123 PVDLVIDHSVIVNFFGDNKAFAKNVTEEYKQNQERYEFLKWGQAAFSNFSVVPPGTGICH 182
           PVDLVIDHSV+++ FG+ +AF  NV  EY++N ERY+FLKWGQ AF+NF VVPPGTGICH
Sbjct: 128 PVDLVIDHSVMIDEFGNPRAFQMNVDREYERNMERYQFLKWGQGAFNNFRVVPPGTGICH 187

Query: 183 QVNLEYLSQTVWTKKEKMTVGKKTGTFEVAYPDSLVGTDSHTTMVNGLAVLGWGVGGIEA 242
           QVNLEYL+QT+W+ +++       G   VAYPD+LVGTDSHTTMVNG AVLGWGVGGIEA
Sbjct: 188 QVNLEYLAQTIWSDEDQ------NGDM-VAYPDTLVGTDSHTTMVNGAAVLGWGVGGIEA 240

Query: 243 EACMLGQPLSMLLPNVVGFKLKGAMKEGVTATDLVLTVTQMLRKLGVVGKFVEFFGPGLD 302
           EA MLGQP+SML+P V+GF+L GAM EG T TDLVL V +MLR  GVVGKFVEF+G GLD
Sbjct: 241 EAAMLGQPISMLIPEVIGFELTGAMVEGTTGTDLVLKVVEMLRAKGVVGKFVEFYGKGLD 300

Query: 303 HLSVADKATIANMAPEYGATCGFFPVDAAAIDYLKTSGRAAPRVALVQAYAKAQGLFRTA 362
            L +AD+ATIANMAPEYGATCGFFP+D   I YL+ +GR   R+ALV+AYAK  G +R A
Sbjct: 301 TLPLADRATIANMAPEYGATCGFFPIDDETIRYLRNTGRDEDRIALVEAYAKENGFWRDA 360

Query: 363 KSADPVFTETLTLDLADVVPSMAGPKRPEGRIALPSVAEGFSVALANEYKKTEEPAKRFA 422
             A P++T+TL+LD+  +VP+++GPKRP+  +AL      F   +   +K+     K  A
Sbjct: 361 DYA-PIYTDTLSLDMGTIVPAISGPKRPQDYVALTGAKAAFQKEMEETFKRPM--GKEIA 417

Query: 423 VEGKKYEIGHGDVVIAAITSCTNTSNPSVLIGAGLLARNAAAKGLKAKPWVKTSLAPGSQ 482
           V+G+ Y +  G VVIA+ITSCTNTSNP V+IGAGL+AR AAA GL  KPWVKTSLAPGSQ
Sbjct: 418 VKGEDYTMESGKVVIASITSCTNTSNPYVMIGAGLVARKAAALGLDRKPWVKTSLAPGSQ 477

Query: 483 VVAAYLADSGLQAHLDKVGFNLVGFGCTTCIGNSGPLPEEISKSINDNGIVAAAVLSGNR 542
           VV+AYL  + LQ  LDK+GFNLVG+GCTTCIGNSGP+ +E+S +I +  +VA +VLSGNR
Sbjct: 478 VVSAYLEAANLQEDLDKIGFNLVGYGCTTCIGNSGPIQQELSDAIAEGDLVATSVLSGNR 537

Query: 543 NFEGRVSPDVQANYLASPPLVVAHALAGSVTKNLAVEPLGEGKDGKPVYLKDIWPTSKEI 602
           NFEGR+SPDV+ANYLASPPLVVA+ALAG++  +LA +P+ + KDG  VYLKDIWP+ KEI
Sbjct: 538 NFEGRISPDVRANYLASPPLVVAYALAGTMDIDLATDPIAQDKDGNDVYLKDIWPSQKEI 597

Query: 603 NAFMKKFVTASIFKKKYADVFKGDTNWRKIKTVESETYRWNMSSTYVQNPPYFEGMKKEP 662
              ++  VT   F  KYADVFKGD  W+ ++T ++ETY W  +STY+QNPPYF+GM  EP
Sbjct: 598 ADLVEATVTREAFLSKYADVFKGDEKWQAVETTDAETYDWPAASTYIQNPPYFQGMGTEP 657

Query: 663 EPVTDIVEARILAMFGDKITTDHISPAGSIKLTSPAGKYLSEHQVRPADFNQYGTRRGNH 722
             +++I +A+ L + GD +TTDHISPAGS   T+PAG+YL + QV+P +FN YG+RRGNH
Sbjct: 658 GTISNIKDAKPLLILGDMVTTDHISPAGSFATTTPAGQYLLDRQVQPREFNSYGSRRGNH 717

Query: 723 EVMMRGTFANIRIKNFMLKGADGNIPEGGLTKHWPDGEQMSIYDAAMKYQQEQVPLVVFA 782
           E+MMRGTFANIRIKN ML G      EGG TK  PDGEQ S+Y+A+M YQ++ +PLVVF 
Sbjct: 718 EIMMRGTFANIRIKNEMLDGV-----EGGYTK-GPDGEQTSVYEASMAYQEQGIPLVVFG 771

Query: 783 GAEYGNGSSRDWAAKGTRLLGVRAVICQSFERIHRSNLVGMGVLPLTFEEGTSWSSLGLK 842
           G +YG GSSRDWAAKGT LLGV+AVI +SFERIHRSNLVGMGV+P  F  G +  SL L 
Sbjct: 772 GEQYGAGSSRDWAAKGTALLGVKAVIAESFERIHRSNLVGMGVIPFEFTGGDTRKSLNLT 831

Query: 843 GDEKVTLRGLVGDLKPRQKLTAEIVSGDGSLQRVSLLCRIDTLDELDYYRNGGILHYVLR 902
           GDE V++ GL   +KP+++++ +I  GDG+ + ++L CRIDT  E++Y  +GG+LHYVLR
Sbjct: 832 GDETVSIHGL-DTIKPQEEVSCDITYGDGTTKTITLKCRIDTAPEIEYIEHGGVLHYVLR 890

Query: 903 KLA 905
            LA
Sbjct: 891 NLA 893


Lambda     K      H
   0.317    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2161
Number of extensions: 112
Number of successful extensions: 8
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 906
Length of database: 895
Length adjustment: 43
Effective length of query: 863
Effective length of database: 852
Effective search space:   735276
Effective search space used:   735276
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory