Align methylmalonyl-CoA mutase (subunit 2/2) (EC 5.4.99.2) (characterized)
to candidate GFF373 PGA1_c03840 methylmalonyl-CoA mutase large subunit
Query= BRENDA::O74009 (563 letters) >FitnessBrowser__Phaeo:GFF373 Length = 655 Score = 369 bits (946), Expect = e-106 Identities = 205/490 (41%), Positives = 301/490 (61%), Gaps = 13/490 (2%) Query: 81 MYRGRIWTMRQYAGYATAEESNKRYKYLLSQGQTGLSVAFDLPTQLGYDSDHPLAEGEVG 140 M + R W +R YAG++TA SN Y+ L++GQTGLSVAFDLPTQ GYDSDH LA GEVG Sbjct: 4 MQKDRPWLIRTYAGHSTASASNALYRANLAKGQTGLSVAFDLPTQTGYDSDHVLARGEVG 63 Query: 141 KVGVAIDSLWDMRILFDGIPLDKVSTSMTINSTAANLLAMYILVAEEQGVSQEKLRGTVQ 200 KVGV + L DMR LFD IPL++++TSMTIN+TA LL++YI VAEEQG KL+GTVQ Sbjct: 64 KVGVPVCHLGDMRSLFDQIPLEQMNTSMTINATAPWLLSLYIAVAEEQGADVSKLQGTVQ 123 Query: 201 NDILKEYIARGTYIFPPQPSMRLTTDIIMYCAENVPKWNPISISGYHIREAGANAVQEVA 260 ND++KEY++RGTY+ PP+PS+++ D+ YC N PKWNP+++ YH++EAGA QE+A Sbjct: 124 NDLIKEYLSRGTYVCPPKPSLKMIADVAEYCYTNAPKWNPMNVCSYHLQEAGATPEQELA 183 Query: 261 FTLADGIEYVKAVIER--GMDVDKFAPRLSFFFAAHNNFLEEIAKFRAARRLWAYIMKEW 318 F LA + + R D R+SFF A F+ E+ K RA LW I ++ Sbjct: 184 FALATAQAVLDELKPRITPEDFPAMVGRISFFVNAGIRFVTEMCKMRAFVDLWDEICRDR 243 Query: 319 FNAKNPRSMMLRFHTQTAGSTLTAQQPENNIVRVAIQALAAVL---GGTQSLHTNSYDEA 375 + ++P+ R+ Q LT QQPENN+ R+ I+ LA L +++ +++EA Sbjct: 244 YGVEDPKFRRFRYGVQVNSLGLTEQQPENNVYRILIEMLAVTLSKKARARAVQLPAWNEA 303 Query: 376 LSLPTEKSVRIALRTQQIIAYESGVVDTVDPLGGAYYIEWLTDHIYEEALKYIEKIQKMG 435 L LP + ++R QQI+AYE+ +++ D G ++ + + A + ++ MG Sbjct: 304 LGLPRPWDQQWSMRMQQILAYETDLLEYGDLFDGNPAVDAKVEDLKTGARAELANLESMG 363 Query: 436 GMMRAIERGYVQKEIAEAAYKYQKEIEEGKRIIVGVNAFVTDEPIEVE-----ILKVDPS 490 G + +IE Y++ + ++ + IE+ + I+VGVN + EP ++ I+ VDP+ Sbjct: 364 GAVASIE--YMKGRLVDSNAERLNRIEKNETIVVGVNKWTEGEPSPLQTEDGGIMVVDPA 421 Query: 491 IREKQIERLKKLRSERDNKKVQEALDKLRNAAEKEDENLMPYIIEAHRHLATLQEVTDVL 550 + ++QI RL RS RD+ VQ AL LR AA+ D N+MP I A + T E + + Sbjct: 422 VEQEQINRLDDWRSGRDDDAVQSALAALRAAAQNGD-NIMPPSIAAAKAGVTTGEWAEEM 480 Query: 551 REIWGEYRAP 560 R+++G YR P Sbjct: 481 RKVYGTYRGP 490 Lambda K H 0.318 0.134 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 827 Number of extensions: 42 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 563 Length of database: 655 Length adjustment: 37 Effective length of query: 526 Effective length of database: 618 Effective search space: 325068 Effective search space used: 325068 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory