Align succinate-semialdehyde dehydrogenase (NADP+) [EC: 1.2.1.16] (characterized)
to candidate GFF2918 PGA1_c29650 succinate-semialdehyde dehdyrogenase GabD
Query= reanno::MR1:200453 (482 letters) >lcl|FitnessBrowser__Phaeo:GFF2918 PGA1_c29650 succinate-semialdehyde dehdyrogenase GabD Length = 491 Score = 617 bits (1592), Expect = 0.0 Identities = 311/482 (64%), Positives = 376/482 (78%), Gaps = 2/482 (0%) Query: 2 LLNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAAL 61 LL DPSLL + YI G + D + T A+ NPA G VIA V + +++ AIA AE A Sbjct: 11 LLTDPSLLEPRAYIGGAFVDG-ADGTFAVKNPARGDVIANVADVSRSQVAGAIAQAEVAQ 69 Query: 62 PAWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFAE 121 W T KER LR+WF+L+ EN +DLA+++T+E GKPL E++GE+ Y ASFIE+FAE Sbjct: 70 KDWAKWTGKERANVLRKWFDLMMENQEDLAVILTAEMGKPLAESRGEIGYGASFIEFFAE 129 Query: 122 EAKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVKP 181 EAKRIYG+TIPGHQ DKRI V+KQP+GV A+ITPWNFP AMITRKA PALAAGC V +P Sbjct: 130 EAKRIYGETIPGHQRDKRITVLKQPIGVAASITPWNFPNAMITRKAGPALAAGCAFVARP 189 Query: 182 APQTPFTALALAVLAERAGIPAGVFSVITG-DAIAIGNEMCTNPIVRKLSFTGSTNVGIK 240 A TP +A ALAVLA+RAGIPAGVF+V+T +A G E C N VRKL+FTGST VG Sbjct: 190 AELTPLSATALAVLADRAGIPAGVFNVVTSSNASETGKEFCENNAVRKLTFTGSTEVGRI 249 Query: 241 LMAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAG 300 LM Q A T+ K S+ELGGNAPFIVFDDA++DAAVEGA++ K+RN GQTCVCANRIYVQAG Sbjct: 250 LMRQAADTVMKCSMELGGNAPFIVFDDADLDAAVEGAIMCKFRNNGQTCVCANRIYVQAG 309 Query: 301 VYDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGKV 360 VYD FA KL AVAK+ VG+G+ G GPLIN AVEKVQ+H+ DA +KGA V+ GG Sbjct: 310 VYDAFAAKLKEAVAKMTVGDGLAEGTQFGPLINEKAVEKVQAHIADAKEKGAEVILGGNP 369 Query: 361 HELGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFYG 420 ELGG FFEPT++T A + M +++ETFGP+APLFKF DDVI+ ANDT FGLA+YFY Sbjct: 370 SELGGTFFEPTIITGATQDMVFSQDETFGPMAPLFKFETEDDVIEMANDTIFGLASYFYA 429 Query: 421 RDISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYICM 480 +D+S V+KVAE+LEYG+VGVNTG+ISTE+APFGG+K SGLGREGS +GIE+YLE+KYICM Sbjct: 430 KDLSRVYKVAEALEYGIVGVNTGIISTELAPFGGVKQSGLGREGSHHGIEDYLEMKYICM 489 Query: 481 SV 482 SV Sbjct: 490 SV 491 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 674 Number of extensions: 19 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 491 Length adjustment: 34 Effective length of query: 448 Effective length of database: 457 Effective search space: 204736 Effective search space used: 204736 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory