Align Ribose import ATP-binding protein RbsA 2, component of D-ribose porter (Nanavati et al., 2006). Induced by ribose (characterized)
to candidate GFF2651 PGA1_c26910 ABC transporter, ATP-binding protein
Query= TCDB::Q9X051 (523 letters) >FitnessBrowser__Phaeo:GFF2651 Length = 522 Score = 263 bits (673), Expect = 9e-75 Identities = 165/504 (32%), Positives = 266/504 (52%), Gaps = 26/504 (5%) Query: 12 LLEARNITKTFPGVIAVNNVTLQIYKGEVCALVGENGAGKSTLMKILAGVYPDYEGQIFL 71 +L +NITK F V A ++V+ ++ GEV AL+GENGAGK+TLM IL G Y G + L Sbjct: 15 VLRLQNITKRFGSVTANDDVSFDLFPGEVIALLGENGAGKTTLMNILFGQYMADTGGVEL 74 Query: 72 EGKEVRFRNPREAQENGIALIPQELDLVPNLSSAENIFLSREPVNEFGVIEYQKMFEQAS 131 G + PR A + G+ ++ Q L NL+ ENI L EP+ G + + Sbjct: 75 FGAPLPPGAPRAALDGGVGMVHQHFTLADNLTVWENITLGVEPLLGLG-LRAGPAKARIR 133 Query: 132 KLFSKLGVNIDPKTKVEDLSTSQQQMVAIAKALSLDAKIIIMDEPTSAIGKRETEQLFNI 191 L + + +DP KV L+ ++Q V I KAL DA+I+I+DEPT+ + +E++ LF Sbjct: 134 ALAEQFHLKVDPNAKVSRLTVGERQRVEILKALYRDARILILDEPTAVLTPQESDALFAT 193 Query: 192 IRSLKNEGKSVIYISHRLEEIFEIADRVVVMRDGRKVGEGPIEEFDHDKLVRLMVGRSI- 250 +R N G SVI+ISH+L E+ I+DRV+V+R G+ V E + D D L LMVG + Sbjct: 194 LREAINRGLSVIFISHKLHEVMAISDRVLVLRHGKLVAERQTADTDSDALAALMVGADVV 253 Query: 251 ---------DQFFIKERATITDEIFRVEGIKLWSLDRKKLLVDDVSFYVRKGEVLGIYGL 301 ++ R T G++ SLD + G++ G+ G+ Sbjct: 254 PAKFAANTPGPALLQLRDVTTPSAGASPGLRHVSLD------------LAAGQITGLAGV 301 Query: 302 VGAGRTELLEAIFGAHPGRTEGKVFIGGKEIKIHSPRDAVKNGIGLVPEDRKTAGLILQM 361 G G+ L + + G ++ G + + G SPR+A+ GI +PEDR G I Sbjct: 302 SGNGQAALSDLVSGLITPQS-GSLTLNGAAPAGWSPREAITAGIARIPEDRHKTGTIADF 360 Query: 362 SVLHNITLPSVVMKLIVRKFGLIDSQLEKEIVRSFIEKLNIKTPSPYQIVENLSGGNQQK 421 + N L + + R G +D + ++ ++ I +++ P P + LSGGN QK Sbjct: 361 DLTENAILETYATRFSHR--GWLDWRAARDFAKTVITGYDVRCPGPDTRIRLLSGGNMQK 418 Query: 422 VVLAKWLAIKPKVLLLDEPTRGIDVNAKSEIYKLISEMAVSGMGVVMVSSELPEILAMSD 481 ++L + L P+++L ++P RG+D+ A + +++ +++ G V+++S +L EI+ +SD Sbjct: 419 LILGRVLEQSPQIILANQPVRGLDIGAVTYVHEQLAKACARGAAVLLISEDLDEIMQLSD 478 Query: 482 RILVMSEGRKTAEFLREEVTEEDL 505 I V+SEGR + F R E+L Sbjct: 479 VIHVISEGRLSPGFARGSKQPEEL 502 Lambda K H 0.317 0.137 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 548 Number of extensions: 27 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 522 Length adjustment: 35 Effective length of query: 488 Effective length of database: 487 Effective search space: 237656 Effective search space used: 237656 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory