Align ABC-type sugar transport system, permease component protein (characterized, see rationale)
to candidate GFF3640 PGA1_262p00440 xylose transport system permease protein XylH
Query= uniprot:D8IUD2 (328 letters) >lcl|FitnessBrowser__Phaeo:GFF3640 PGA1_262p00440 xylose transport system permease protein XylH Length = 433 Score = 117 bits (292), Expect = 7e-31 Identities = 89/291 (30%), Positives = 147/291 (50%), Gaps = 36/291 (12%) Query: 46 SAATFITLSNDIPPLVVMSVGMTFILIIGGIDLSVGS----VMALAASMLSMAMVRW--- 98 + A ++T I PL TF L+ GG ++G+ V+ + A++L++A + W Sbjct: 160 NVAWYLTDGQTIGPL-----DSTF-LVFGGTSGTLGTTLSWVVGIVATLLALAAL-WNSR 212 Query: 99 ------GWPLYAAAPLGVVVAALCGTLTGMVSVHWRIPSFIVSLGVLEIARGLAYQVTNS 152 G+P+ A V+ ++ ++ G V++ L +I ++ + Sbjct: 213 RAKQGHGFPVKPAWAEAVIAGSIAASILGFVAI----------LNAYQIPARRLKRMMEA 262 Query: 153 RTEYIGSAVDVISSPILFGMSPAFLSAIAIVIIAQLVLTRTVLGRYWIGIGTNEEAVRLS 212 + E + + V +G+ + L IA ++ ++ RT LGRY G N +A LS Sbjct: 263 QGETMPEGLVVG-----YGLPISVLILIATAVVMTIIARRTRLGRYIFATGGNPDAAELS 317 Query: 213 GVNPNPSKILAFALMGALAGIAALFQVSRLEAADPNGGVGMELQVIAAVVIGGTSLMGGR 272 G+N + FALMG L ++A+ +RL + G EL+VIAA VIGGT+L GG Sbjct: 318 GINTRLLTVKIFALMGFLCALSAVVASARLANHSNDIGTLDELRVIAAAVIGGTALSGGF 377 Query: 273 GSIVSTFIGVLIISVLEAGLAQVGVSEPMKRIITGAVIVVAVILD-TYRRR 322 G+I +G LI+ L++G+A VGV P + I+ G V+V AV +D YR+R Sbjct: 378 GTIYGAILGALIMQSLQSGMAMVGVDAPFQNIVVGTVLVAAVWIDILYRKR 428 Score = 63.9 bits (154), Expect = 7e-15 Identities = 55/236 (23%), Positives = 112/236 (47%), Gaps = 25/236 (10%) Query: 24 LGLMAALLAMCVMFAFLSEN-FLSAATFITLSNDIPPLVVMSVGMTFILIIGGIDLSVGS 82 LG++ A + +C+ F L++ FL+ L+ + +M+ GM F+++ IDLSVG+ Sbjct: 28 LGMIGAFVILCIGFNILTDGRFLTPRNIFNLTIQTVSVAIMATGMVFVIVTRHIDLSVGA 87 Query: 83 VMALAASMLSMAMV-----RWGWPLYAAA------PLGVVVAALCGTLTGMVSVHWRIPS 131 ++A ++++++ +G L A +G+ + L G G + IP+ Sbjct: 88 LLATCSAVMAVVQTDVLPDMFGLGLNHPATWIITVAVGLAIGTLIGAFQGWMVGFLTIPA 147 Query: 132 FIVSLGVLEIARGLAYQVTNSRTEYIGSAVDVISSPILFGMSPAFLSAIAIVIIAQLVLT 191 FIV+LG + R +A+ +T+ +T IG + S+ ++FG + L ++ +V T Sbjct: 148 FIVTLGGFLVWRNVAWYLTDGQT--IG---PLDSTFLVFGGTSGTLGTTLSWVVG-IVAT 201 Query: 192 RTVLGRYWIGIGTNEEAVRLSGVNPNPS---KILAFALMGALAGIAALFQVSRLEA 244 L W + A + G P+ ++A ++ ++ G A+ ++ A Sbjct: 202 LLALAALW----NSRRAKQGHGFPVKPAWAEAVIAGSIAASILGFVAILNAYQIPA 253 Lambda K H 0.325 0.137 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 330 Number of extensions: 17 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 328 Length of database: 433 Length adjustment: 30 Effective length of query: 298 Effective length of database: 403 Effective search space: 120094 Effective search space used: 120094 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory