Align L-iditol 2-dehydrogenase (EC 1.1.1.14) (characterized)
to candidate GFF1300 PGA1_c13160 mannitol 2-dehydrogenase MtlK
Query= BRENDA::Q9KWR5 (485 letters) >lcl|FitnessBrowser__Phaeo:GFF1300 PGA1_c13160 mannitol 2-dehydrogenase MtlK Length = 488 Score = 294 bits (752), Expect = 5e-84 Identities = 168/442 (38%), Positives = 248/442 (56%), Gaps = 13/442 (2%) Query: 2 ITRETLKSLPANVQAPPYDIDGIKPGIVHFGVGNFFRAHEAFYVEQILEH--APDWAIVG 59 ++ +TL LP + P YD I PGIVH G+GNF RAH+A+Y+ +++ A DW I+G Sbjct: 3 LSNDTLSQLPQTIGRPSYDRAEISPGIVHIGLGNFHRAHQAWYLHALMQSGLAMDWGIIG 62 Query: 60 VGLTGSDRSKKKAEEFKAQDCLYSLTETAPSGKSTVRVMGALRDYLLAPADPEAVLKHLV 119 G+ +D + + AQDCL +L E P+G+S V+G L D+L AD ++++ + Sbjct: 63 AGVRAADAGMR--DRLLAQDCLTTLIELDPTGRSA-EVIGPLIDFLPVEADNASLIRCMA 119 Query: 120 DPAIRIVSMTITEGGYNINETTGAFDLENAAVKADLKNPEKPSTVFGYVVEALRRRWDAG 179 IRIVS+T+TEGGY + DL + ++ D+ P++P TVFG +VEALR R G Sbjct: 120 GSPIRIVSLTVTEGGYYQDAQHKGLDLNHEDIRHDIARPDRPRTVFGAIVEALRLRRGRG 179 Query: 180 GKAFTVMSCDNLRHNGNVARKAFLGYAKARDPELAKWIEENATFPNGMVDRITP-TVSAE 238 AFTV SCDNL+ NG + R A + A+ DPELA WI++ FPN MVD I P T AE Sbjct: 180 LPAFTVQSCDNLQGNGQITRTAVVTLAQQTDPELAAWIDQTGAFPNSMVDCIVPATGPAE 239 Query: 239 IAKKLNAASGLDDDLPLVAEDFHQWVLEDQFADGRPPLEKAGVQMVGDVTDWEYVKIRML 298 IA L G++D P+ E++ WV+ED+F GRPP + AG DV +E +KIR+L Sbjct: 240 IA--LARGYGIEDTAPVTHENYRHWVIEDEFCAGRPPWDLAGAIFTDDVHGYESMKIRVL 297 Query: 299 NAGHVMLCFPGILVGYENVDDAIEDSELLGNLKNYLNKDVIPTLKAPSGMTLEGYRDSVI 358 NAGH +L G L+ + D ++D L + +++P + A M + Y + Sbjct: 298 NAGHQVLANAGELLSIATIADCMKDPLLAAFFRTVQTAEILPHVIAVPEMAPKDYLTLIE 357 Query: 359 SRFSNKAMSDQTLRIASDGCSKVQVFWTETVRRAIEDKRDLSRIAFGIASYLEMLRGRDE 418 +RFSN + D T R+A DG S+ F +R A+ K + + A + +M G E Sbjct: 358 ARFSNPEIRDTTRRVAYDGSSRHPGFVMPILRDAVRSKGAIDGLCLVEALWAQMCTGLRE 417 Query: 419 KGGTYESSEPTYGDAEWKLAKA 440 ++SE D +W+ K+ Sbjct: 418 -----DASEIAPNDPDWETRKS 434 Lambda K H 0.317 0.135 0.398 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 608 Number of extensions: 23 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 485 Length of database: 488 Length adjustment: 34 Effective length of query: 451 Effective length of database: 454 Effective search space: 204754 Effective search space used: 204754 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory