Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate GFF2991 PGA1_c30400 alcohol dehydrogenase AlkJ
Query= metacyc::MONOMER-15202 (579 letters) >lcl|FitnessBrowser__Phaeo:GFF2991 PGA1_c30400 alcohol dehydrogenase AlkJ Length = 529 Score = 632 bits (1629), Expect = 0.0 Identities = 333/544 (61%), Positives = 391/544 (71%), Gaps = 23/544 (4%) Query: 35 AFDYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRDNYHWIHIPVGYLYCINNPRTDWR 94 ++DYI+VGAG+AGC+LANRLSA RVLL+EAGG+DNYHW+HIP+GYLYCINNPRTDW Sbjct: 2 SWDYIIVGAGSAGCVLANRLSA-AGQRVLLLEAGGKDNYHWVHIPMGYLYCINNPRTDWM 60 Query: 95 FRTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDDAWRWDNCLP 154 +RTE + GLNGR+LIYPRGK LGGCSSINGMLYLRGQA DYDGW + G W WD+ LP Sbjct: 61 YRTEAEAGLNGRALIYPRGKVLGGCSSINGMLYLRGQAADYDGWRQ-RGLTGWGWDDVLP 119 Query: 155 DFMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKWQVLADFATAAVEAGVPRTRD 214 F + ED+ G +D HG GGEWR+E QRL W VL D+ AA E G+P+ D Sbjct: 120 YFKKSEDYV----DGSSD-----MHGVGGEWRVENQRLHWDVLDDWMQAAAEWGLPKVTD 170 Query: 215 FNRGDNEGVDAFEVNQRSGWRWNASKAFLRGVEQRGNLTVWHSTQVLKLDFASGEGSEPR 274 FN G+NEGV F VNQRSGWR N +KAFLR NL V ++ +G R Sbjct: 171 FNTGNNEGVGYFRVNQRSGWRMNTAKAFLRTATGE-NLKVETGAHTRRILIENG-----R 224 Query: 275 CCGVTVERAGKKVVTTARC--EVVLSAGAIGSPQLLQLSGIGPTALLAEHAIPVVADLPG 332 GV + G V TAR EV+LSAGAI SPQ+LQLSG+GP ALL +H I V D+P Sbjct: 225 AVGVEYSQGG--AVKTARTGGEVLLSAGAINSPQILQLSGLGPEALLRDHGIAVQRDMPE 282 Query: 333 VGENLQDHLQIRSIYKVKGAKTLNTMANSLIGKAKIGLEYILKRSGPMSMAPSQLCIFTR 392 VG+NLQDHLQ+R +++KGAKTLNT+ANSLIGKAKI EY ++RSGPMSMAPSQL F+R Sbjct: 283 VGQNLQDHLQLRCAWRLKGAKTLNTLANSLIGKAKIAAEYAMRRSGPMSMAPSQLGAFSR 342 Query: 393 SSKEYEHPNLEYHVQPLSLEAFGQPLHDFPAITASVCNLNPTSRGTVRIKSGNPRQAPAI 452 S + P+LEYHVQPL+LEAFGQPLHDFP +TASVCNL P SRG V I S +P QAP I Sbjct: 343 SRPDLATPDLEYHVQPLTLEAFGQPLHDFPGLTASVCNLRPESRGEVAITSADPMQAPRI 402 Query: 453 SPNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSDEDLARLAGDIGTT 512 +PNYLSTE DRQVA ++R R I Q A +Y P E KPG DL + AG IGTT Sbjct: 403 APNYLSTEGDRQVAVAAIRQARAIMGQEAMQRYAPVEMKPGGGSDEAADLMQAAGAIGTT 462 Query: 513 IFHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGNTNSPTLMIAEKAA 572 IFHP T +MG ++ A VD LR+RGV GLRVVDAS+MP I SGNTN+PT+MIAEKAA Sbjct: 463 IFHPTCTLRMGAEE--AAPVDGALRLRGVGGLRVVDASVMPVIPSGNTNAPTIMIAEKAA 520 Query: 573 GWIL 576 IL Sbjct: 521 DMIL 524 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 956 Number of extensions: 35 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 529 Length adjustment: 36 Effective length of query: 543 Effective length of database: 493 Effective search space: 267699 Effective search space used: 267699 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory