Align D-lactate oxidase, FAD-linked subunit (EC 1.1.3.15) (characterized)
to candidate GFF2925 PGA1_c29720 glycolate oxidase subunit GlcD
Query= reanno::Phaeo:GFF2925 (482 letters) >FitnessBrowser__Phaeo:GFF2925 Length = 482 Score = 963 bits (2489), Expect = 0.0 Identities = 482/482 (100%), Positives = 482/482 (100%) Query: 1 MEMPIPDQTVLSQKTELALRLAAVLPDDALVQDPAETRAYECDALTAYKCPPMLVVLPRT 60 MEMPIPDQTVLSQKTELALRLAAVLPDDALVQDPAETRAYECDALTAYKCPPMLVVLPRT Sbjct: 1 MEMPIPDQTVLSQKTELALRLAAVLPDDALVQDPAETRAYECDALTAYKCPPMLVVLPRT 60 Query: 61 TKEVSDVLRICHAAGVPVVPRGAGTSLAGGALPTADCVILGVARMNAVLETDYDNRIIRV 120 TKEVSDVLRICHAAGVPVVPRGAGTSLAGGALPTADCVILGVARMNAVLETDYDNRIIRV Sbjct: 61 TKEVSDVLRICHAAGVPVVPRGAGTSLAGGALPTADCVILGVARMNAVLETDYDNRIIRV 120 Query: 121 QTGRTNLSVSGAVEEEEFFYAPDPSSQLACAIAGNIAMNSGGAHCLKYGVTTNNLMGVTM 180 QTGRTNLSVSGAVEEEEFFYAPDPSSQLACAIAGNIAMNSGGAHCLKYGVTTNNLMGVTM Sbjct: 121 QTGRTNLSVSGAVEEEEFFYAPDPSSQLACAIAGNIAMNSGGAHCLKYGVTTNNLMGVTM 180 Query: 181 VMMDGTVVEIGGAHLDAGGLDLLGVICGSEGQLGVVTEATLRILRKPEGARPVLIGYDSN 240 VMMDGTVVEIGGAHLDAGGLDLLGVICGSEGQLGVVTEATLRILRKPEGARPVLIGYDSN Sbjct: 181 VMMDGTVVEIGGAHLDAGGLDLLGVICGSEGQLGVVTEATLRILRKPEGARPVLIGYDSN 240 Query: 241 EVAGACVSDIIKAGVLPVAIEFMDRPCIEACEAFAKAGYPMCEALLIVEVEGSDAEIDHQ 300 EVAGACVSDIIKAGVLPVAIEFMDRPCIEACEAFAKAGYPMCEALLIVEVEGSDAEIDHQ Sbjct: 241 EVAGACVSDIIKAGVLPVAIEFMDRPCIEACEAFAKAGYPMCEALLIVEVEGSDAEIDHQ 300 Query: 301 LRLITEIARSHNPVELREARDSDEAARIWLGRKSAFGAMGQINDYMCLDGTIPVTSLPHV 360 LRLITEIARSHNPVELREARDSDEAARIWLGRKSAFGAMGQINDYMCLDGTIPVTSLPHV Sbjct: 301 LRLITEIARSHNPVELREARDSDEAARIWLGRKSAFGAMGQINDYMCLDGTIPVTSLPHV 360 Query: 361 LRRIGEMSKEFGLDVANVFHAGDGNMHPLILFDANKPGDLETCEAFGAEILKLCVEVGGC 420 LRRIGEMSKEFGLDVANVFHAGDGNMHPLILFDANKPGDLETCEAFGAEILKLCVEVGGC Sbjct: 361 LRRIGEMSKEFGLDVANVFHAGDGNMHPLILFDANKPGDLETCEAFGAEILKLCVEVGGC 420 Query: 421 LTGEHGVGIEKRDLMLDQYGVADIEAQLRVKDVFDPKWLLNPAKVFPLSTTQSRRTPAVT 480 LTGEHGVGIEKRDLMLDQYGVADIEAQLRVKDVFDPKWLLNPAKVFPLSTTQSRRTPAVT Sbjct: 421 LTGEHGVGIEKRDLMLDQYGVADIEAQLRVKDVFDPKWLLNPAKVFPLSTTQSRRTPAVT 480 Query: 481 PL 482 PL Sbjct: 481 PL 482 Lambda K H 0.320 0.137 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 934 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 482 Length adjustment: 34 Effective length of query: 448 Effective length of database: 448 Effective search space: 200704 Effective search space used: 200704 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory