Align propionyl-CoA carboxylase α subunit (EC 6.4.1.3) (characterized)
to candidate GFF1015 PGA1_c10320 methylcrotonoyl-CoA carboxylase beta chain
Query= metacyc::MONOMER-17283 (535 letters) >FitnessBrowser__Phaeo:GFF1015 Length = 527 Score = 701 bits (1810), Expect = 0.0 Identities = 344/526 (65%), Positives = 402/526 (76%) Query: 10 PNSPDFQANFAYHQSLAADLRERLAQIRQGGGAEQRRRHEERGKLFVRDRIDTLIDPDSS 69 P+S F+ N H + E R GGG + R RHE RGK+ R R+ L+DP S Sbjct: 2 PSSEGFKQNREAHLDALGQISEAAETARMGGGEKSRARHESRGKMLPRRRVANLLDPGSP 61 Query: 70 FLEIGALAAYNVYDEEVPAAGIVCGIGRVAGRPVMIIANDATVKGGTYFPLTVKKHLRAQ 129 FLEIGA AA+ +YD P AG+V GIGRV G+ VM++ NDATVKGGTYFP+TVKKHLRAQ Sbjct: 62 FLEIGATAAHAMYDGAAPGAGVVAGIGRVHGQEVMVVCNDATVKGGTYFPMTVKKHLRAQ 121 Query: 130 EIARENRLPCIYLVDSGGAYLPLQSEVFPDRDHFGRIFYNQAQMSAEGIPQIACVMGSCT 189 EIA ENRLPCIYLVDSGGA LP Q EVFPDRDHFGRIFYNQA+MSA+GI QIA VMGSCT Sbjct: 122 EIAEENRLPCIYLVDSGGANLPQQDEVFPDRDHFGRIFYNQARMSAKGIAQIAVVMGSCT 181 Query: 190 AGGAYVPAMSDEVVIVKGNGTIFLGGPPLVKAATGEEVTAEELGGADVHTRISGVADYFA 249 AGGAYVPAMSD +IVK GTIFL GPPLVKAATGE V+AE+LGG DVHTR+SGVADY A Sbjct: 182 AGGAYVPAMSDVTIIVKEQGTIFLAGPPLVKAATGEVVSAEDLGGGDVHTRLSGVADYLA 241 Query: 250 NDDREALAIVRDIVAHLGPRQRANWELRDPEPPRYDPREIYGILPRDFRQSYDVREVIAR 309 DD ALA+ R V L + PE P YDP EI G++P D R YD+REVIAR Sbjct: 242 EDDAHALALARRAVQSLNITKPLTVNWASPEEPAYDPEEILGVVPGDLRTPYDIREVIAR 301 Query: 310 IVDGSRLHEFKTRYGTTLVCGFAHIEGFPVGILANNGILFSESALKGAHFIELCCARNIP 369 +VDGSR EFK R+G TLV GFAH++G PVGI+ANNG+LFSE+A KGAHF+ELC R IP Sbjct: 302 LVDGSRFDEFKPRFGETLVTGFAHVKGCPVGIIANNGVLFSEAAQKGAHFVELCSQRKIP 361 Query: 370 LVFLQNITGFMVGKQYENGGIAKDGAKLVTAVSCANVPKFTVIIGGSFGAGNYGMCGRAY 429 LVFLQNITGFMVG++YEN GIA+ GAK+VTAV+ NVPK T+++GGSFGAGNYGM GRAY Sbjct: 362 LVFLQNITGFMVGRKYENEGIARHGAKMVTAVATTNVPKVTMLVGGSFGAGNYGMSGRAY 421 Query: 430 QPRQLWMWPNARISVMGGTQAANVLLTIRRDNLRARGQDMTPEEQERFMAPILAKYEQEG 489 QPR LW WPN+RISVMGG QAA VL T++RD + +G + EE+ F P + +E++ Sbjct: 422 QPRFLWSWPNSRISVMGGEQAAGVLATVKRDAIERQGGSWSTEEEASFKQPTIDMFEEQS 481 Query: 490 HPYYASARLWDDGVIDPVETRRVLALGLAAAAEAPVQPTRFGVFRM 535 HP YASARLWDDG+IDP ++R VLAL L+AA AP++ TRFGVFRM Sbjct: 482 HPLYASARLWDDGIIDPRKSRDVLALSLSAALNAPIEDTRFGVFRM 527 Lambda K H 0.322 0.139 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 946 Number of extensions: 37 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 527 Length adjustment: 35 Effective length of query: 500 Effective length of database: 492 Effective search space: 246000 Effective search space used: 246000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory