Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate GFF2122 PGA1_c21540 propionyl-CoA carboxylase alpha chain
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__Phaeo:GFF2122 Length = 681 Score = 369 bits (948), Expect = e-106 Identities = 206/514 (40%), Positives = 304/514 (59%), Gaps = 27/514 (5%) Query: 4 FSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYL 63 F ++L+ANRGEIA RV+K ++MG+ +A+YS+ADK ++H K ADEA +IG PA SY+ Sbjct: 2 FEKILIANRGEIACRVIKTARKMGIKTVAIYSDADKQSLHVKMADEAVHIGPPPANQSYI 61 Query: 64 NIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKR 123 I+ +++A A+HPGYGFLSENA+FAEA+ G+ F+GP + + DK+ K+ Sbjct: 62 VIDKVMEAIRATGAQAVHPGYGFLSENAKFAEALAAEGVAFVGPPVGAIESMGDKITSKK 121 Query: 124 LANMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMDVW 183 +A AGV T PG G + DEA+K++ +IGYP+M+KA++GGGG G+ + + + + Sbjct: 122 IAQEAGVSTVPGYMGLIADADEAVKISNEIGYPVMIKASAGGGGKGMRIAWSDAEAREGF 181 Query: 184 ERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIEE 243 + +K A +FG +FIEK+ PRHIE Q++ D +GN + EREC+IQRRNQK++EE Sbjct: 182 QSSKNEAANSFGDDRIFIEKFVTQPRHIEIQVLCDAHGNGIYLGERECSIQRRNQKVVEE 241 Query: 244 APSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHPTT 303 APSP L + R +M E + K + Y + GT E D ++FYFLE+N RLQVEHP T Sbjct: 242 APSPFLDEDTRRAMGEQAVALAKAVGYASAGTVE-FIVDGDKNFYFLEMNTRLQVEHPVT 300 Query: 304 ELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVTYY 363 ELI +DLV+ I++A GE L +Q D+ ++ G AIE R+ AED F S G +T Y Sbjct: 301 ELITGVDLVEQMIRIAGGEPLSITQNDV--KLNGWAIENRLYAEDPYRGFLPSIGRLTRY 358 Query: 364 REP----TGP----------------GVRVDSGIESGSYVPPYYDSLVSKLIVYGESREY 403 R P GP VR D+G+ G + YYD +++KL +G +R+ Sbjct: 359 RPPAEVAAGPLHDSGKWQGDAPAGELAVRNDTGVFEGGEISMYYDPMIAKLCTWGPTRDA 418 Query: 404 AIQAGIRALADYKIGGIKTTIELYKWIMQDPDFQEGKFSTSYISQKTDQFVK--YLREQE 461 AI A AL +++ GI + +M P F G +T++I ++ + L EQ+ Sbjct: 419 AIAAMRDALDGFEVEGIGHNLPFLSAVMDHPIFIAGTMTTAFIEEQYPEGFNGVELPEQD 478 Query: 462 --EIKAAIAAEIQSRGLLRTSSTDNKGKAQSKSG 493 +I AA AA + + RT + + K G Sbjct: 479 LRKIAAASAAMHRVAEIRRTRVSGRMDNHERKVG 512 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 762 Number of extensions: 42 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 681 Length adjustment: 37 Effective length of query: 472 Effective length of database: 644 Effective search space: 303968 Effective search space used: 303968 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory