Align Propionyl-CoA carboxylase beta chain; EC 6.4.1.3 (characterized)
to candidate GFF2128 PGA1_c21600 propionyl-CoA carboxylase beta chain
Query= SwissProt::Q168G2 (510 letters) >FitnessBrowser__Phaeo:GFF2128 Length = 510 Score = 926 bits (2393), Expect = 0.0 Identities = 450/510 (88%), Positives = 485/510 (95%) Query: 1 MKDILEQLEDRRAAARLGGGQKRIDAQHGRGKLTARERVDLLLDEGSFEEFDMFVTHRCT 60 MKDIL +LEDRR AARLGGGQKRIDAQHGRGKLTARER++LLLDEGSFEEFDMFV HRCT Sbjct: 1 MKDILSELEDRRNAARLGGGQKRIDAQHGRGKLTARERIELLLDEGSFEEFDMFVAHRCT 60 Query: 61 DFNMQDQKPAGDGVVTGWGTINGRVVYVFSQDFTVLGGSVSETHSKKICKIMDMAMQNGA 120 DF M++Q+PAGDGVVTGWGTINGR+VYVFSQDFTV GGS+SETH++KICKIMDMA+QNGA Sbjct: 61 DFGMENQRPAGDGVVTGWGTINGRMVYVFSQDFTVFGGSLSETHAQKICKIMDMAVQNGA 120 Query: 121 PVIGINDSGGARIQEGVDSLAGYGEVFQRNIMASGVVPQISMIMGPCAGGAVYSPAMTDF 180 PVIGINDSGGARIQEGV SLAGY EVFQRNIMASGVVPQIS+IMGPCAGGAVYSPAMTDF Sbjct: 121 PVIGINDSGGARIQEGVASLAGYAEVFQRNIMASGVVPQISVIMGPCAGGAVYSPAMTDF 180 Query: 181 IFMVKDSSYMFVTGPDVVKTVTNEQVSAEELGGATTHTRKSSVADAAFENDVEALAEVRR 240 IFMVKD+SYMFVTGPDVVKTVTNE V+AEELGGA+THT+KSSVAD AFENDVEALAEVRR Sbjct: 181 IFMVKDTSYMFVTGPDVVKTVTNEVVTAEELGGASTHTKKSSVADGAFENDVEALAEVRR 240 Query: 241 LVDFLPLNNREKPPVRPFFDDPDRIEPSLDTLVPDNPNTPYDMKELIHKLADEGDFYEIQ 300 LVDFLPLNNREKPPVRPFFD+P R+E SLDTL+P NPNTPYDMKELIHK+ADEGDFYEIQ Sbjct: 241 LVDFLPLNNREKPPVRPFFDEPGRVETSLDTLIPANPNTPYDMKELIHKVADEGDFYEIQ 300 Query: 301 EEFAKNIITGFIRLEGRTVGVVANQPLVLAGCLDIDSSRKAARFVRFCDAFEIPLLTLID 360 E+FAKNIITGFIRLEG+TVGVVANQP VLAGCLDIDSSRKAARFVRFCD FEIP+LTL+D Sbjct: 301 EDFAKNIITGFIRLEGQTVGVVANQPTVLAGCLDIDSSRKAARFVRFCDCFEIPILTLVD 360 Query: 361 VPGFLPGTSQEYGGVIKHGAKLLYAYGEATVPMVTVITRKAYGGAYVVMSSKHLRADFNY 420 VPGFLPGTSQEYGGVIKHGAKLL+AYGEATVP VTVITRKAYGGAY VM+SKHLR DFNY Sbjct: 361 VPGFLPGTSQEYGGVIKHGAKLLFAYGEATVPKVTVITRKAYGGAYDVMASKHLRGDFNY 420 Query: 421 AWPTAEVAVMGAKGATEIIHRGDLGDPEKIAQHTADYEERFANPFVASERGFVDEVIQPR 480 AWPTAE+AVMGAKGATEIIHR DL D +KIA+HT DYEERFANPFVA+ERGF+DEVI P+ Sbjct: 421 AWPTAEIAVMGAKGATEIIHRADLADADKIAEHTKDYEERFANPFVAAERGFIDEVIMPQ 480 Query: 481 STRKRVARAFASLRNKSVQMPWKKHDNIPL 510 STRKRV+RAFASLR K ++ PWKKHDNIPL Sbjct: 481 STRKRVSRAFASLRGKQLKNPWKKHDNIPL 510 Lambda K H 0.319 0.137 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 978 Number of extensions: 30 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 510 Length adjustment: 34 Effective length of query: 476 Effective length of database: 476 Effective search space: 226576 Effective search space used: 226576 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory