Align Xylose import ATP-binding protein XylG, component of Xylose transporter, XylFGH (XylF (R), 359 aas; XylG (C), 525 aas; XylH (M), 389 aas (characterized)
to candidate GFF2770 PGA1_c28130 ABC transporter, ATP-binding protein
Query= TCDB::A6LW11 (525 letters) >FitnessBrowser__Phaeo:GFF2770 Length = 505 Score = 256 bits (654), Expect = 1e-72 Identities = 165/514 (32%), Positives = 272/514 (52%), Gaps = 14/514 (2%) Query: 1 MSEYILEMRDIVKEFFGVKALDGVTLKVKKGEIHALCGENGAGKSTLMKVLSGEHPAGSY 60 M++ +L ++ + K + GV A D V+ + GE+HAL GENGAGKSTL+K++ G S Sbjct: 1 MTQPLLSLQGLTKAYPGVVANDTVSFDIGAGEVHALLGENGAGKSTLVKMIYGLVKPDS- 59 Query: 61 SGKIIFEGKELSQTSIKDSESVGIAIIHQELALIKQLSIAENIFLGNEIGARGLVNFSEQ 120 GK++ G+ + + + + GIA++ Q +L L++AENI LG E L + + Q Sbjct: 60 -GKMLLHGEPYTPGEPRQARADGIAMVFQHFSLFDALNVAENIALGMETPP-ALRDLATQ 117 Query: 121 LNKTNELLNRVKLNVNPLTRAGDLGIGHQQLVEIAKALSKNAKLLILDEPSASLSEGEVE 180 + K +E L ++P GDL G +Q VEI + L ++ KLLI+DEP++ L+ EVE Sbjct: 118 IRKVSETYG---LPLDPYRTVGDLSAGERQRVEIIRCLLQDPKLLIMDEPTSVLTPQEVE 174 Query: 181 VLMGILDDLRRDGVTCIYISHKLNEVTRICDNVTVIRDGSTIGQVPISEIDQDKLVQMMV 240 +L L LR +G + +YISHKL E+ +CD+ T++R G +G+ SE + +MMV Sbjct: 175 ILFQTLQKLRSEGTSILYISHKLEEIRTLCDHATILRLGKNVGECVPSETSARDMAEMMV 234 Query: 241 GREMKNLFPREEHKIGEEFFEIKNFNVLDPFNKNIKRVKNASFTLRRGEILGISGLVGSG 300 G ++ R +G+ +I +V P + +KN T+R+GEILG+ G+ G+G Sbjct: 235 GTALQTP-ERSGRALGDVALDISGLSVPAP-SAFGTALKNVHMTVRKGEILGVGGVAGNG 292 Query: 301 RTEMVASIYGSFQGQKSGEVYFEGKKIDIKNPNDALSKGIAMVPEDRKKDGIIAGMSVAK 360 + E++ + G + V +G I P GI PE+R MS+ + Sbjct: 293 QDELLGVLSGE-TTTAADAVTLDGAPIGNLGPVARRRLGILAAPEERLGHAAAPDMSLTE 351 Query: 361 NMTMSNLVK---YKRPLNVIDKDKEMMDVLKFIDEIKIKTASTELAIKNLSGGNQQKVIL 417 N ++ + R +E + K I ++T E A ++LSGGN QK ++ Sbjct: 352 NAMLTAATREGLASRGFLKWGLAQEFAE--KVIKSFDVRTPGPENAARSLSGGNLQKFVI 409 Query: 418 AKNLLAEPKILILDEPTRGIDVGAKYEIYKLIFKLAKQGISIIMVSSELPEVLGISDRVL 477 + +L P +L++++PT G+D A I + + LA G ++I +S +L E++ I+D Sbjct: 410 GREVLQRPDVLVVNQPTWGVDAAAAAAIRQSLLDLAAGGTAVICISQDLDELMEIADSFA 469 Query: 478 VMNEGEIKASLENNGLTQEMIMNYSVGKKNEEVS 511 +NEG + A GL+ + I G EV+ Sbjct: 470 ALNEGRLSAPRPTAGLSVDEIGLMMGGAHGMEVA 503 Lambda K H 0.315 0.135 0.362 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 606 Number of extensions: 34 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 525 Length of database: 505 Length adjustment: 35 Effective length of query: 490 Effective length of database: 470 Effective search space: 230300 Effective search space used: 230300 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory