Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate GFF385 PGA1_c03960 ribose import ATP-binding protein RbsA
Query= TCDB::G4FGN3 (494 letters) >FitnessBrowser__Phaeo:GFF385 Length = 509 Score = 312 bits (800), Expect = 2e-89 Identities = 182/503 (36%), Positives = 293/503 (58%), Gaps = 14/503 (2%) Query: 3 PILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGEII 62 P +E+K I K F V A K +S+ PG +H I+GENGAGKSTLM I+ G Y+ D+GE+ Sbjct: 4 PAIELKGISKAFGPVQANKDISIRVAPGTIHGIIGENGAGKSTLMSILYGFYKADKGEVW 63 Query: 63 YEGRGVRWNHPSEAINAGIVTVFQELSVMDNLSVAENIFMGDEEKRGIFIDYKKMYREAE 122 G+ AI+AGI VFQ +++N +V ENI +G E+ G+ R++ Sbjct: 64 IHGKRTEIPDSQAAISAGIGMVFQHFKLVENFTVLENIILGAEDG-GLLKPSLSKARKSL 122 Query: 123 KFMKEEFGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETEKLFE 182 K + E+ + +DP+ ++ + + +QQ VEI +A+Y++A +LILDEPT LT E ++LF Sbjct: 123 KDLAAEYELNVDPDARIDEIGVGMQQRVEILKALYRQADILILDEPTGVLTPAEADQLFR 182 Query: 183 VVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMVGRKL 242 ++ L+ +G II I+H+L EI E D VSV+R GE T + E + E+MVGRK+ Sbjct: 183 ILDRLRAEGKTIILITHKLREIMEYTDTVSVMRRGEMTATVKTAETSPEHLAELMVGRKV 242 Query: 243 EKFYIKEAHEPGEVVLEVKNLS------GERFENVSFSLRRGEILGFAGLVGAGRTELME 296 K PG+ +LE++NLS R +N+ ++R GEILG AG+ G G++ELME Sbjct: 243 LLRVDKVPATPGKPILEIENLSVVDEAGVARVKNIDLTVRAGEILGIAGVAGNGQSELME 302 Query: 297 TIFGFRPKRGGEIYIEGKRVEINHP-LDAIEQ---GIGLVPEDRKKLGLILIMSIMHNVS 352 + G R + G I + G + ++ DA + + VPEDR++ GLI+ NV+ Sbjct: 303 VLGGMREGQ-GSIRLNGAPLPLSGAGSDARARRAAHVAHVPEDRQREGLIMDFHAWENVA 361 Query: 353 L--PSLDRIKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLA 410 ++G ++ + + + FD+RP P SGGNQQK+V+A+ + Sbjct: 362 FGYHHAPEYQRGLLMNNAALRADTEAKMAKFDVRPPDPWLAAKNFSGGNQQKIVVAREIE 421 Query: 411 LKPKILILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFG 470 P++L++ +PTRG+D+GA I++ + +L +G ++++S EL E+L ++DR+AVM G Sbjct: 422 RNPELLLIGQPTRGVDIGAIEFIHKQIVELRDQGKAILLVSVELEEILSLADRVAVMFDG 481 Query: 471 KLAGIIDAKEASQEKVMKLAAGL 493 + G A + ++++ L AG+ Sbjct: 482 MIMGERPADQTDEKELGLLMAGV 504 Lambda K H 0.318 0.138 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 667 Number of extensions: 39 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 509 Length adjustment: 34 Effective length of query: 460 Effective length of database: 475 Effective search space: 218500 Effective search space used: 218500 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory