Align L-arabonate dehydratase; L-arabinonate dehydratase; EC 4.2.1.25 (characterized)
to candidate PP_1010 PP_1010 phosphogluconate dehydratase
Query= SwissProt::Q1JUQ1 (583 letters) >lcl|FitnessBrowser__Putida:PP_1010 PP_1010 phosphogluconate dehydratase Length = 608 Score = 200 bits (508), Expect = 2e-55 Identities = 158/516 (30%), Positives = 248/516 (48%), Gaps = 48/516 (9%) Query: 44 IGICNTWSELTPCNAHFRKLAEHVKRGISE-------AGGFPVEFPVFSNGESNLRPSAM 96 + I + ++++ + + E +K+ + E AGG P + GE + A+ Sbjct: 68 VAIVSAYNDMLSAHQPYLHFPEQIKQALREVGSVGQFAGGVPAMCDGVTQGEPGME-LAI 126 Query: 97 LTRNLASMDVEEAIRGNPIDAVVLLAGCDKTTPALLMGAASCD-VPAIVVSGGPMLNGKL 155 +R + +M A+ N DA ++L CDK P L+MGA +P I V GGPM++G Sbjct: 127 ASREVIAMSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMVSGI- 185 Query: 156 EGKNIGSGTAVWQLHEALKAGEIDVHHFLSAEAGMSRSAGTCNTMGTASTMACMAEALGV 215 S + + G+ L +E S GTC GTA+T + E +G+ Sbjct: 186 ------SNKQKADVRQRYAEGKASREELLESEMNSYHSPGTCTFYGTANTNQLVMEVMGL 239 Query: 216 ALPHNAAIPAVDSRRYVLAHMSGIRIVEMALEG---LVLSKILTRAAFENAIRANAAIGG 272 LP + + R L + ++ M + L +I+ A N+I A A GG Sbjct: 240 HLPGASFVNPYTPLRDALTAEAAQQVTRMTKASGSFMPLGEIVDEKALVNSIVALHATGG 299 Query: 273 STNAVIHLKAIAGRIGVPLELEDWMRIGRDTPTIVDLMPSGRFPMEEFYYAGGLPAVLRR 332 STN +H+ AIA G+ L +D + PT+ + P+G+ + F AGG+ ++R Sbjct: 300 STNHTLHIPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPNGKADINHFQAAGGMAFLIRE 359 Query: 333 LGEGGLLPNPDALTV---------------NGKSLWDNVREAPNY--DEEVIRPLDRPLI 375 L + GLL + D TV NGK +W RE P + DE ++RP+ RP Sbjct: 360 LLDAGLL-HEDVNTVAGHGLRRYTQEPFLDNGKLVW---REGPQHSLDESILRPVSRPFS 415 Query: 376 ADGGIRILRGNLAPRGAVLKPSAASPELLKHRGRAVVFENLDHYKATINDEALDIDASSV 435 A+GG+R++ GNL RG V+K SA +PE A VF+ D +A +++ V Sbjct: 416 AEGGLRVMEGNLG-RG-VMKVSAVAPEHQVVEAPARVFQ--DQQSLADAFKAGELERDFV 471 Query: 436 MVLKNCGPRGYPGMAEVGNMGLPPKLLRQGVKDMVRISDARMSGTAYGTV--VLHVAPEA 493 V++ GPR GM E+ + +L+ + ++D RMSG A G + +HV PEA Sbjct: 472 AVVRFQGPR-CNGMPELHKLTPFLGVLQDRGYKVALVTDGRMSG-ASGKIPAAIHVCPEA 529 Query: 494 AAGGPLAAVRNGDWIELDCEAGTLHLDITDDELHRR 529 GGPLA VR+GD + +D GTL + ++ +EL R Sbjct: 530 YDGGPLARVRDGDIVRVDGVEGTLRIMVSAEELASR 565 Lambda K H 0.319 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 827 Number of extensions: 46 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 583 Length of database: 608 Length adjustment: 37 Effective length of query: 546 Effective length of database: 571 Effective search space: 311766 Effective search space used: 311766 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory