Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate PP_4422 PP_4422 succinate-semialdehyde dehydrogenase (NADP+)
Query= SwissProt::Q9I6M5 (483 letters) >FitnessBrowser__Putida:PP_4422 Length = 490 Score = 489 bits (1259), Expect = e-143 Identities = 243/482 (50%), Positives = 326/482 (67%), Gaps = 2/482 (0%) Query: 2 QLKDAKLFRQQAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKAL 61 +L+ L +AY+DG WV + ++ V +PA ++I V + A+EAA +A Sbjct: 11 KLRRNDLLETRAYIDGRWVTGEG--SLDVTDPANDQVIAQVAHCDESWVDLAVEAASRAF 68 Query: 62 PAWRALTAKERANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFGE 121 WR +R LR+W LM ENQ+DLA +MT EQGKPL+E++GEI Y A+F+EWF Sbjct: 69 DGWRNTLPTQRGAVLRKWAALMRENQEDLAVIMTCEQGKPLSESRGEINYGANFVEWFAA 128 Query: 122 EAKRIYGDTIPGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLKP 181 E +R YG+TIP H P+ +++ QPIGVT AITPWNFPSAMITRKA ALAAGC M++KP Sbjct: 129 EGERCYGETIPSHLPNSQLVTKLQPIGVTVAITPWNFPSAMITRKAAAALAAGCPMIVKP 188 Query: 182 ASQTPYSALALAELAERAGIPKGVFSVVTGSAGEVGGELTSNPIVRKLTFTGSTEIGRQL 241 A +TP SALALA LAE AGIP GVF V+TG A ++ L + VR +FTGSTE+GR L Sbjct: 189 APETPLSALALARLAEEAGIPGGVFQVLTGDAPKMSARLLAASAVRAFSFTGSTEVGRIL 248 Query: 242 MAECAQDIKKVSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYVQDGV 301 + + A +KKVSLELGG+APFIVFDDA + AVEG + +K+ +GQ C+ ANR+YV + Sbjct: 249 LRQSADTVKKVSLELGGHAPFIVFDDASIAEAVEGCIGAKFATSGQDCLGANRIYVHRNI 308 Query: 302 YDAFVDKLKAAVAKLNIGNGLEAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSGGKPH 361 Y FV++ A KL +G+GLE GV GP+ K E I++A+S GAK+ GG + Sbjct: 309 YGQFVEEFTKATEKLRVGHGLEEGVDIGPMTRVTVANKCREQISNALSLGAKLTCGGIDN 368 Query: 362 ALGGTFFEPTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASYFYAR 421 LG +F PT+L DV ++ +ETFGP+A + F E EV+ +N+TEFGLA+Y Y Sbjct: 369 HLGSSFVLPTVLADVTDKMDIAFEETFGPVAAILPFDSEDEVVTRANNTEFGLAAYVYTN 428 Query: 422 DLARVFRVAEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLG 481 DL R RV+++LEYGMV +NT + PFGG K SGLGREGSK+G+ +Y+E+KY+C+G Sbjct: 429 DLRRACRVSDRLEYGMVALNTPKFTGAPIPFGGWKQSGLGREGSKHGLAEYMELKYVCIG 488 Query: 482 GI 483 G+ Sbjct: 489 GL 490 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 616 Number of extensions: 16 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 490 Length adjustment: 34 Effective length of query: 449 Effective length of database: 456 Effective search space: 204744 Effective search space used: 204744 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory