Align 4-trimethylammoniobutyraldehyde dehydrogenase (EC 1.2.1.47) (characterized)
to candidate PP_5063 PP_5063 betaine aldehyde dehydrogenase, NAD-dependent
Query= BRENDA::P49189 (494 letters) >lcl|FitnessBrowser__Putida:PP_5063 PP_5063 betaine aldehyde dehydrogenase, NAD-dependent Length = 490 Score = 486 bits (1250), Expect = e-141 Identities = 253/484 (52%), Positives = 334/484 (69%), Gaps = 6/484 (1%) Query: 14 YRGGARVEPADASGTEKAFEPATGRVIATFTCSGEKEVNLAVQNAKAAFKIWSQKSGMER 73 Y GA V+ A + T +A PATG V+A + E +V AV++A+ K+W+ + M+R Sbjct: 10 YIDGAYVD-AGSDATFEAINPATGEVLAHVQRATEADVEKAVESAERGQKVWAAMTAMQR 68 Query: 74 CRILLEAARIIREREDEIATMECINNGKSIFEAR-LDIDISWQCLEYYAGLAASMAGEHI 132 RIL A I+RER DE+A +E ++ GKS E R +DI LEYYAGL ++ GE I Sbjct: 69 SRILRRAVDILRERNDELAMLETLDTGKSYSETRYVDIVTGADVLEYYAGLVPAIEGEQI 128 Query: 133 QLPGGSFGYTRREPLGVCVGIGAWNYPFQIASWKSAPALACGNAMVFKPSPFTPVSALLL 192 L SF YTRREPLGV VGIGAWNYP QIA WKSAPALA GNAM+FKPS T ++ L L Sbjct: 129 PLRESSFVYTRREPLGVTVGIGAWNYPIQIALWKSAPALAAGNAMIFKPSEVTSLTTLKL 188 Query: 193 AEIYSEAGVPPGLFNVVQG-GAATGQFLCQHPDVAKVSFTGSVPTGMKIM-EMSAKGIKP 250 AEIY+EAG+P G+FNV+ G G G +L +HP + KVSFTG TG K+M S+ +K Sbjct: 189 AEIYTEAGLPNGVFNVLTGSGREVGTWLTEHPRIEKVSFTGGTTTGKKVMASASSSSLKE 248 Query: 251 VTLELGGKSPLIIFSDCDMNNAVKGALMANFLTQGQVCCNGTRVFVQKEILDKFTEEVVK 310 VT+ELGGKSPLII +D D++ A A+MANF + GQVC NGTRVF+ E+ F ++ + Sbjct: 249 VTMELGGKSPLIICADADLDKAADIAMMANFYSSGQVCTNGTRVFIPAEMKAAFEAKIAE 308 Query: 311 QTQRIKIGDPLLEDTRMGPLINRPHLERVLGFVKVAKEQGAKVLCGGDIYVPEDPKLKDG 370 + RI++G+P E+T GPL++ H+E VLG++ KE+GA+VLCGG+ D G Sbjct: 309 RVARIRVGNPEDENTNFGPLVSFQHMESVLGYIAKGKEEGARVLCGGERLTAGD--FAKG 366 Query: 371 YYMRPCVLTNCRDDMTCVKEEIFGPVMSILSFDTEAEVLERANDTTFGLAAGVFTRDIQR 430 ++ P V T+C DDMT VKEEIFGPVMSIL+++TE EV+ RANDT +GLAAGV T DI R Sbjct: 367 AFVAPTVFTDCTDDMTIVKEEIFGPVMSILTYETEEEVIRRANDTDYGLAAGVCTNDITR 426 Query: 431 AHRVVAELQAGTCFINNYNVSPVELPFGGYKKSGFGRENGRVTIEYYSQLKTVCVEMGDV 490 AHR++ +L+AG C+IN + SP E+P GGYK+SG GRENG ++ Y+++K+V VE+G Sbjct: 427 AHRIIHKLEAGICWINAWGESPAEMPVGGYKQSGVGRENGVSSLAQYTRIKSVQVELGGY 486 Query: 491 ESAF 494 S F Sbjct: 487 NSVF 490 Lambda K H 0.320 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 696 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 490 Length adjustment: 34 Effective length of query: 460 Effective length of database: 456 Effective search space: 209760 Effective search space used: 209760 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory