Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate PP_4550 PP_4550 long-chain-fatty-acid/CoA ligase
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >FitnessBrowser__Putida:PP_4550 Length = 562 Score = 243 bits (621), Expect = 1e-68 Identities = 166/534 (31%), Positives = 258/534 (48%), Gaps = 43/534 (8%) Query: 54 GRRYTYAQLQTEAHRLASALLG-MGLTPGDRVGIWSHNNAEWVLMQLATAQVGLVLVNIN 112 G +YA+L+ + A+ L L PG+R+ + N ++ + + GL++VN N Sbjct: 47 GVTLSYAELERHSAAFAAWLQQHTDLKPGERIAVQMPNVLQYPIAVFGAMRAGLIVVNTN 106 Query: 113 PAYRTAEVEYALNKVGCKLLVSMARFKTSDYLGMLRELAPEW------QGQQPGHLQAAK 166 P Y E+ + G + LV + F ++E+ P+ + + L AAK Sbjct: 107 PLYTEREMRHQFKDSGARALVYLNMFGKR-----VQEVLPDTGIEYLIEAKMGDLLPAAK 161 Query: 167 LPQLKTVVWIDDEAGQGADEPGLLRFTELIARGNAADPRLAQVAAGLQATDPINIQFTSG 226 + TVV + P + F +++ G P+ L D +Q+T G Sbjct: 162 GWLVNTVVDKLKKMVPAYRLPQAVPFKQVLREGRGLSPK----PVSLNLDDIAVLQYTGG 217 Query: 227 TTGFPKGATLTHRNILNNGFFIGECMKLTPADR----------LCIPVPLYHCFGMVLGN 276 TTG KGA LTH N++ N + C D + P+PLYH + N Sbjct: 218 TTGLAKGAMLTHGNLVANMLQVLACFSQHGPDGQKLLKDGQEVMIAPLPLYHIYAFT-AN 276 Query: 277 LACF----THGATIVYPND--GFDPLTVLQTVQDERCTGLHGVPTMFIAELDHPRFAEFN 330 C H I P D GF ++ + R + L G+ T+F+A +DHP F + + Sbjct: 277 CMCMMVTGNHNVLITNPRDIPGF-----IKELGKWRFSALLGLNTLFVALMDHPGFRQLD 331 Query: 331 LSTLRTGIMAGSPCPTEVMKRVVEQMNLREITIAYGMTETSPVSCQSSTDTPLSKRVSTV 390 S L+ G+ +R + R I YG+TETSPV+ S+ R+ TV Sbjct: 332 FSALKVTNSGGTALVKATAERWEDLTGCR-IVEGYGLTETSPVA--STNPYGQLARLGTV 388 Query: 391 GQVQPHLEVKIVDPDTGAVVPIGQRGEFCTKGYSVMHGYWGDEAKTREAIDEGGWMHTGD 450 G K++D D G +P+G+RGE C KG VM GYW T +A+D GW TGD Sbjct: 389 GIPVAGTAFKVIDDD-GNELPLGERGELCIKGPQVMKGYWQQPEATAQALDAEGWFKTGD 447 Query: 451 LATMDAEGYVNIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPDQKYGEELC 510 +A +D +G+ IV R KDM+I G N+YP EIE+ + HP+V + +GVPD++ GE + Sbjct: 448 IAVIDPDGFTRIVDRKKDMIIVSGFNVYPNEIEDVVMGHPKVANCAAIGVPDERSGEAVK 507 Query: 511 AWIIAKPGTQPTEDDIRAFCKGQIAHYKVPRYIRFVTSFPMTVTGKIQKFKIRD 564 +++ + G + D+++A+CK YKVP++I S PMT GKI + ++RD Sbjct: 508 LFVVPREGGL-SVDELKAYCKANFTGYKVPKHIVLRESLPMTPVGKILRRELRD 560 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 787 Number of extensions: 46 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 562 Length adjustment: 36 Effective length of query: 542 Effective length of database: 526 Effective search space: 285092 Effective search space used: 285092 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory