Align cytochrome c component of deoxyribose dehydrogenase (characterized)
to candidate PP_3623 PP_3623 Alcohol dehydrogenase cytochrome c subunit
Query= reanno::WCS417:GFF2133 (447 letters) >FitnessBrowser__Putida:PP_3623 Length = 447 Score = 780 bits (2014), Expect = 0.0 Identities = 377/445 (84%), Positives = 398/445 (89%), Gaps = 3/445 (0%) Query: 5 RFARTAGWLALPCLVAAGLLAWYVTREPATPFEQEQAGATFEPALVSRGEYVARLSDCVA 64 RFARTAGWLALPCLVAAGLLAWYVTREPA+PF QA A +PALVSRGEYVARLSDCVA Sbjct: 4 RFARTAGWLALPCLVAAGLLAWYVTREPASPFADAQATAA-DPALVSRGEYVARLSDCVA 62 Query: 65 CHSLAGKAPFAGGLEMATPLGAIHATNITPDKSTGIGTYSLADFDRAVRHGVAPGGRRLY 124 CHSL G PFAGGLEMATPLGAIHATNITPD+ +GIG Y+LADFDRAVR GVAPGGRRLY Sbjct: 63 CHSLPGGKPFAGGLEMATPLGAIHATNITPDRDSGIGNYTLADFDRAVRQGVAPGGRRLY 122 Query: 125 PAMPYPSYVKLSDDDIKALYAFFMQGIKPANQPNIPSDIPWPLNMRWPIALWNGVFAPTA 184 PAMPYPSY KLSDDD+KALYAFFM G++PA Q N+ SDIPWPLN+RWPIALWNG+FA T Sbjct: 123 PAMPYPSYAKLSDDDVKALYAFFMHGVQPARQANLGSDIPWPLNLRWPIALWNGLFAATT 182 Query: 185 TYAAKPDQDALWNRGAYIVQGPGHCGSCHTPRGLAFNEKALDEAGAPFLAGALLDGWYAP 244 Y K QDA WNRGAYIVQGPGHCGSCHTPRGLAFNEKALD++G PFL+GALLDGWYAP Sbjct: 183 PYTDKAGQDAQWNRGAYIVQGPGHCGSCHTPRGLAFNEKALDDSGKPFLSGALLDGWYAP 242 Query: 245 SLRQDPNTGLGRWSEPQIVQFLKTGRNAHAVVYGSMTEAFNNSTQFMQDDDLAAIARYLK 304 SLR D NTGLGRWSE +I QFLKTGRN HAVVYGSMTEAFNNSTQFM DDDLAAIA YLK Sbjct: 243 SLRADHNTGLGRWSEAEIAQFLKTGRNRHAVVYGSMTEAFNNSTQFMHDDDLAAIAHYLK 302 Query: 305 SLPGDPQRDGAPWQYQA--VAAVQDAPGAHTYATRCASCHGLDGKGQPEWMPPLAGATSA 362 SLPGDPQRDGAPW YQA +A D+PGA TY TRCASCHGLDGKGQ EWMPPLAGATSA Sbjct: 303 SLPGDPQRDGAPWHYQAESLATRLDSPGARTYVTRCASCHGLDGKGQAEWMPPLAGATSA 362 Query: 363 LAKESASAINITLNGSQRVVASGVPDAYRMPAFREQLSDTEIAEVLSYVRSTWGNNGGAV 422 LAKESASAINITLNGSQRVVA+GVPDAYRMPA REQLSD EIA+VLS+VR+ WGN GGAV Sbjct: 363 LAKESASAINITLNGSQRVVAAGVPDAYRMPALREQLSDQEIADVLSFVRTAWGNQGGAV 422 Query: 423 DANAVGKLRGHTDPASSSPIILHMR 447 DA AVGKLRGHTDPASSSPIILHMR Sbjct: 423 DAQAVGKLRGHTDPASSSPIILHMR 447 Lambda K H 0.318 0.133 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 877 Number of extensions: 33 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 447 Length of database: 447 Length adjustment: 33 Effective length of query: 414 Effective length of database: 414 Effective search space: 171396 Effective search space used: 171396 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory