Align isobutanoate/2-methylbutanoate--CoA ligase (EC 6.2.1.1) (characterized)
to candidate PP_4063 PP_4063 putative Long-chain-fatty-acid-CoA ligase
Query= metacyc::MONOMER-20125 (556 letters) >lcl|FitnessBrowser__Putida:PP_4063 PP_4063 putative Long-chain-fatty-acid-CoA ligase Length = 560 Score = 164 bits (415), Expect = 8e-45 Identities = 156/563 (27%), Positives = 243/563 (43%), Gaps = 64/563 (11%) Query: 24 ATVYGDCTSVV----YDAVSYTWSQTHRRCLCLASSIASLGIENGHVVSVLAPNVPQMYE 79 ATV C S + + Y+W Q + A ++ +LG+ G V + +PN Q Sbjct: 26 ATVARCCDSEALVSRHQGLRYSWRQLAEQVEIYARALIALGVNTGDRVGIWSPNCAQWCI 85 Query: 80 LHFAVPMAGAILNAVNLRLDARTISILLHHSESKLIFVDHLSRDLILEAIALFPKQAPVP 139 L A GAIL +N + +L S + + + EA V Sbjct: 86 LQLASAKVGAILVNINPAYRVGELEYVLRQSGCRWL--------VCAEAFKTSDYHTMVQ 137 Query: 140 RLVFMADESESGNSSELGKEFFCSYKDLIDRGDPDFKWVMPKSEW--------------- 184 LV E S EL E + +I +P + Sbjct: 138 ELV---PELASAAPGELASECLPELRGVISLAANPPAGFLPWHAFAERAGQTSVEACTAR 194 Query: 185 -------DPMILNYTSGTTSSPKGVVHCHRGIF---IMTVDSLIDWGVPKQPVYLWTLPM 234 P+ + YTSGTT +PKG H I M +SL G+ + + +P+ Sbjct: 195 QQSLQFDQPVNIQYTSGTTGAPKGATLSHYNILNNGFMVGESL---GLTARDRMVIPVPL 251 Query: 235 FHANGWSYP-WGMAAVGGTNICLRK-FDSEIIYDMIKRHGVTHMCGAPVVLNMLSNAPGS 292 +H G G G T I FD+E+ + T + G P + + + P Sbjct: 252 YHCFGMVMANLGCITHGSTMIYPNDAFDAELTLRAVAEERATILYGVPTMFIAMLDHPSR 311 Query: 293 E--PLKTTVQIMTAGAPPPSAVLFRT-ESLGFA-VSHGYGLTETAGLVVSCAWKKEWNHL 348 L T + AGA P V+ R + + A V YG+TET+ + + + L Sbjct: 312 AHMDLSTLRSGIMAGATCPIEVMRRVIDQMHMAEVQIAYGMTETSPVSLQTGPDDDLE-L 370 Query: 349 PATERARLKSRQGVGTVMQTKIDVVDPVTGAAVKRDGSTLGEVVLRGGSVMLGYLKDPEG 408 T R T Q + +VD G V R +GE+ RG SVMLGY +P+ Sbjct: 371 RVTTVGR--------TQPQLENKLVD-ADGCIVPR--GEIGELCTRGYSVMLGYWDNPQA 419 Query: 409 TAKSMTADGWFYTGDVGVMHPDGYLEIKDRSKDVIISGGENLSSVEVESILYSHPDILEA 468 TA ++ GW ++GD+ VM GY+ I R+KD+II GGEN+ E+E Y+HP + +A Sbjct: 420 TADAIDPAGWMHSGDLAVMDEQGYVRIVGRNKDMIIRGGENIYPRELEEFFYTHPAVADA 479 Query: 469 AVVARPDEFWGETPCAFVSLKKGLTKKPTEKEIVEYCRSKLPRYMVPKTVVFKEELPKTS 528 V+ P +GE A++ L G T +E+ +C++++ + VP+ + F +E P T Sbjct: 480 QVIGIPCSRYGEEIVAWIKLHPG--HSATVEELQGWCKARIAHFKVPRYIRFVDEYPMTV 537 Query: 529 TGKVQKFILRDMA-RGMGSATAG 550 TGKVQKF +R+++ + +A+AG Sbjct: 538 TGKVQKFRMREISVAEIAAASAG 560 Lambda K H 0.319 0.135 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 752 Number of extensions: 44 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 556 Length of database: 560 Length adjustment: 36 Effective length of query: 520 Effective length of database: 524 Effective search space: 272480 Effective search space used: 272480 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory