Align Alcohol dehydrogenase (quinone), cytochrome c subunit; ADH; Alcohol dehydrogenase (quinone), subunit II; Cytochrome c-553; Cytochrome c553; Ethanol:Q2 reductase; G3-ADH subunit II; Quinohemoprotein-cytochrome c complex; Ubiquinol oxidase; EC 1.1.5.5 (characterized)
to candidate PP_3382 PP_3382 gluconate 2-dehydrogenase cytochrome c subunit
Query= SwissProt::P0A388 (468 letters) >FitnessBrowser__Putida:PP_3382 Length = 417 Score = 465 bits (1196), Expect = e-135 Identities = 232/409 (56%), Positives = 287/409 (70%), Gaps = 3/409 (0%) Query: 16 LLAGTALAQTPDADSALVQKGAYVARLGDCVACHTALHGQSYAGGLEIKSPIGTIYSTNI 75 +L A AQ D A V+ G Y+AR GDCVACHTA G+ +AGGL +++PIGT+YSTNI Sbjct: 12 VLGAGAAAQAVANDDAQVRLGEYLARAGDCVACHTAKGGKPFAGGLPMETPIGTVYSTNI 71 Query: 76 TPDPTYGIGRYTFAEFDEAVRHGIRKDGSTLYPAMPYPSFSRMTKEDMQALYAYFMHGVK 135 TP + GIG+Y+F +FD+AVR GI KDGSTLYPAMPYPS++R++++DMQALYAYFM GV Sbjct: 72 TPAAS-GIGQYSFEDFDQAVRRGIGKDGSTLYPAMPYPSYARVSEQDMQALYAYFMKGVA 130 Query: 136 PVAQPDKQPDISWPLSMRWPLGIWRMMFSPSPKDFTPAPGTDPEIARGDYLVTGPGHCGA 195 PV Q +K DI WPLSMRWPL IWR +F+P K + + DP + RG YLV G GHCGA Sbjct: 131 PVEQANKASDIPWPLSMRWPLAIWRGVFAPEAKPWQASATADPVVNRGAYLVEGLGHCGA 190 Query: 196 CHTPRGFAMQEKALDAAGGPDFLSGGAPIDNWVAPSLRNDPVVGLGRWSEDDIYTFLKSG 255 CHTPR MQEKAL AA G FL+G AP++ W+A +LR D GLG WSE + FLK+G Sbjct: 191 CHTPRALTMQEKALSAADGEQFLAGSAPLEGWIAKNLRGDHKDGLGSWSEAQLVQFLKTG 250 Query: 256 RIDHSAVFGGMGDVVAWSTQYFTDDDLHAIAKYLKSLPPVPPSQGNYTYDPSTANMLASG 315 R D SAVFGGM DVV S Q+ +D DL AIA+YLK+LPP P + YD A+ L G Sbjct: 251 RSDRSAVFGGMSDVVEHSMQHMSDADLTAIARYLKTLPPSNPDDQLHVYDKQVADALWKG 310 Query: 316 NTASVPGADTYVKECAICHRNDGGGVARMFPPLAGNPVVVTENPTSLVNVIAHGGVLPPS 375 + S PGA Y+ CA CHR DG G R+FP LAGNPVV T + TSL++V+ GG +P + Sbjct: 311 DD-SKPGAAVYIDNCAACHRTDGQGYTRVFPALAGNPVVQTADATSLIHVVLAGGTVPAT 369 Query: 376 NWAPSAVAMPGYSKSLSAQQIADVVNFIRTSWGNKAPGTVTAADVTKLR 424 + APS MP + LS Q++A+VVNFIR+SWGN+ VTA DV LR Sbjct: 370 HSAPSNFTMPAFGWRLSDQEVAEVVNFIRSSWGNQG-SAVTAGDVKSLR 417 Lambda K H 0.317 0.134 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 674 Number of extensions: 35 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 468 Length of database: 417 Length adjustment: 32 Effective length of query: 436 Effective length of database: 385 Effective search space: 167860 Effective search space used: 167860 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory