Align Altronate dehydratase; EC 4.2.1.7; D-altronate hydro-lyase (uncharacterized)
to candidate PP_3601 PP_3601 galactarate dehydratase
Query= curated2:O34673 (497 letters) >lcl|FitnessBrowser__Putida:PP_3601 PP_3601 galactarate dehydratase Length = 517 Score = 244 bits (623), Expect = 5e-69 Identities = 164/495 (33%), Positives = 254/495 (51%), Gaps = 34/495 (6%) Query: 4 FIKIHKQDNVLLALRDIQKGERLHAYGVSIEVKDDIKRGHKIALQSIKENDSIVKYGFPI 63 ++++H DNV++ + D GE + + + + + + HK+A SI + + + +YG I Sbjct: 12 YVRLHDDDNVVVVVNDGGLGEGAR-FADGLTLIEGVPQSHKVATVSIAKGEPVRRYGQII 70 Query: 64 GHASQDISIGEHIHVHNTKTNLSDIQLYSYTPRFDENPYSN---ENRTFKGFRRENGDAG 120 G+A +D+ G V ++ + PR D P E TF+G+R +G G Sbjct: 71 GYALEDLRQGSW--VQESQLAMPAAPELDSLPRCDAVPQPLPPLEGFTFEGYRNADGTVG 128 Query: 121 VRNELWIVPTVGCVNGIAEKMLQRFVRETGDIAP-FDNVLVLKHQYGCSQLGDDHENTKQ 179 RN L I TV CV G+ E ++R E P D+V+ + H YGC + + Sbjct: 129 TRNILGITTTVQCVTGVLEHAVKRIRNELLPKYPNVDDVVAITHSYGCGVAINARDAYIP 188 Query: 180 I--LLNAIRHPNAGG-VLVLGLGCENNELARMKE--------------ALQDVNLKRVKF 222 I + N R+PN GG LV+ LGCE + +++ LQD +L V+ Sbjct: 189 IRTVRNLARNPNLGGEALVISLGCEKLQASQVMHDNDPSVDLSDPWLYRLQDASLGFVEM 248 Query: 223 LESQSVTDEMEAGVALLKEIHEAAKGDKREDIPLSELKIGLKCGGSDGFSGITANPLLGR 282 +E M+ LK++ + +RE +P SEL +G++CGGSD FSGITANP LG Sbjct: 249 IEQI-----MDLAETRLKKLDQR----RRETVPASELILGMQCGGSDAFSGITANPALGY 299 Query: 283 FSDYLIAQGGSTVLTEVPEMFGAETILMQRAANEEVFHKIVDLINDFKQYFIKHDQPVYE 342 +D L+ G + + +EV E+ A +L RA N++V +V ++ + +Y + Sbjct: 300 AADLLVRAGATVLFSEVTEVRDAIYMLTSRAENQDVADALVREMDWYDRYLQQGAADRSA 359 Query: 343 NPSPGNKAGGISTLEDKSLGCTQKAGISPVTDVLKYGEVLKTKGLTLLSAPGNDLIASSA 402 N +PGNK GG+S + +KSLG K+G + VL GE KGL + P +D + + Sbjct: 360 NTTPGNKKGGLSNIVEKSLGSIVKSGSGAIQGVLGPGERANRKGLIFCATPASDFVCGTL 419 Query: 403 LAAAGCQIVLFTTGRGTPFG-TFVPTVKVATNTELYEAKPHWIDFNAGLLAEDDVHEEYV 461 AAG + +FTTGRGTP+G P VKV T +EL + P ID +AG +A E + Sbjct: 420 QLAAGMNLHVFTTGRGTPYGLAMAPVVKVCTRSELAQRWPDLIDIDAGRIASGRSTIEEL 479 Query: 462 LREFIHYMIEVASGQ 476 E HY ++VASG+ Sbjct: 480 GWELFHYYLDVASGR 494 Lambda K H 0.317 0.137 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 564 Number of extensions: 25 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 517 Length adjustment: 34 Effective length of query: 463 Effective length of database: 483 Effective search space: 223629 Effective search space used: 223629 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory